Segundo Principio de la Termodinámica
De Laplace
1 Introducción
2 Máquinas térmicas: enunciado de Kelvin-Planck
2.1 Máquinas térmicas
Una máquina térmica es un dispositivo que, operando de forma cíclica, toma de calor de un foco caliente, realiza un cierto trabajo (parte del cual se emplea en hacer funcionar la propia máquina) y entrega calor de desecho a un foco frío, normalmente el ambiente.
El ejemplo característico de máquina térmica es la máquina de vapor, que se emplea en la mayoría de las centrales eléctricas (sean estas térmicas, termo-solares o nucleares). En una máquina de vapor una cierta cantidad de líquido se hace hervir en un horno (foco caliente); el vapor resultante mueve una turbina, enfriándose parcialmente. El vapor enfriado pasa a un condensador, donde es enfriado a la temperatura ambiente, liberando calor y volviendo a ser líquido. Una bomba (movida por la turbina) toma ese líquido y vuelve a llevarlo al horno, manteniendo en marcha el sistema.
Tenemos cuatro términos energéticos en este proceso:
- El calor | Qc | proporcionado por el foco caliente.
- El calor | Qf | cedido al foco frío
- El trabajo | Wext | realizado por la turbina
- El trabajo Wint necesario para hacer funcionar la máquina térmica
La cantidad neta de trabajo que proporciona la máquina es lo que produce, menos lo que emplea en funcionar
De acuerdo con el primer principio de la termodinámica, por tratarse de un proceso cíclico la energía interna del sistema no cambia en un ciclo, y el trabajo neto equivale a la diferencia entre el el calor que entra y el calor que sale
Se define el rendimiento de una máquina térmica según el principio general de “lo que obtenemos dividido por lo que nos cuesta”. En este caso, “lo que obtenemos” es el trabajo neto. “Lo que nos cuesta” es el calor que entra procedente del horno. Por tanto

2.2 Enunciado de Kelvin-Planck
A la hora de aumentar la eficiencia de una máquina, el primer objetivo sería reducir, o eliminar si es posible, el calor de desecho | Qf | . Se plantean dos alternativas
- ¿Es posible una máquina térmica que no genere calor de desecho, sino que todo el calor absorbido se transforme en trabajo neto? Por ejemplo, podría usarse la turbina para enfriar directamente el vapor y reenviarlo al horno, sin pasar por un condensador donde se ceda calor al ambiente sin realizar trabajo útil
- ¿Es posible una reutilización del calor de desecho, de forma que se haga recircular y se incluya en el calor absorbido? La idea sería que el calor de derecho contribuya a calentar el vapor, en lugar de arrojarlo al exterior.
La respuesta a ambas preguntas es negativa.
El enunciado de Kelvin-Planck del Segundo Principio de la Termodinámica es el siguiente:
Es imposible construir una máquina que, operando en un ciclo, produzca como único efecto la extracción de calor de un foco y la realización de una cantidad equivalente de trabajo
Este enunciado refleja un hecho empírico y no se deduce de ninguna ley previa.
El enunciado de Kelvin-Planck afirma que es imposible construir una máquina que tenga un rendimiento del 100%. Siempre habrá calor de desecho que, en la mayoría de los casos equivale a más de la mitad del calor absorbido.
3 Procesos reversibles e irreversibles
El Segundo principio establece a que existen procesos que pueden recorrerse en un sentido, pero no el opuesto. Podemos transformar integramente el trabajo en calor (es lo que hace una estufa de resistencias), pero no el calor en trabajo (ya que lo prohíbe el enunciado de Kelvin-Planck)