Problemas del segundo principio de la termodinámica (GIE)
De Laplace
1 Problemas de boletín
1.1 Cálculo de eficiencias máximas
Calcule el rendimiento máximo que puede tener una máquina térmica que funcione entre
- 0°C y 100°C.
- 100°C y 200°C.
- 27°C y 1200 K.
Halle asimismo el coeficiente de desempeño máximo que pueden tener un refrigerador que funcione entre
- 4°C y 25°C.
- 0°C y 100°C.
Calcule igualmente los valores máximos del coeficiente de desempeño para una bomba de calor que funcione entre las temperaturas de los dos apartados anteriores.
1.2 Asociación de dos máquinas térmicas
Se tiene una máquina de Carnot que opera entre 1500 K y 600 K recibiendo un flujo de calor . El calor que sale de ella no se desperdicia sino que se usa para alimentar una segunda máquina de Carnot que opera entre 600 K y 300 K. Halle el rendimiento del conjunto, el calor que sale del sistema y el trabajo total que realiza en la unidad de tiempo.
Supongamos ahora que en lugar de tratarse de máquinas de Carnot se trata de máquinas reales que tienen un rendimiento del 50% del máximo posible. ¿Cuál sería en ese caso el rendimiento de la asociación, el calor desechado y el trabajo total realizado? ¿Cuánta entropía se produce a lo largo de un ciclo de la máquina?
1.3 Eficiencia de aparatos hipotéticos
Un inventor mantiene que ha desarrollado una máquina térmica que recibe 700 kJ de calor desde un foco térmico a 500 K y produce 300 kJ de trabajo neto transfiriendo el calor sobrante a un foco térmico a 290 K. ¿Es razonable?
Nuestro inventor vuelve a la carga, esta vez con un refrigerador que, asegura, mantiene el contenido refrigerado a 2°C mientras el ambiente se encuentra a 24°C, siendo su potencia de 12000 frigorías (una frigoría equivale a 1 kcal/h de calor extraído) con un consumo de 1000 W. ¿Le hacemos caso?
1.4 Producción de entropía en un ciclo de tres pasos
Para un cilindro que sigue el proceso cíclico descrito en el problema “Sucesión de tres procesos cuasiestáticos”, determine el rendimiento del ciclo relativo al que tendría una máquina de Carnot que operara entre la temperatura máxima y mínima del ciclo.
Halle la producción de entropía en el universo tras la realización del ciclo si se supone que el calor entra desde un foco que está a la máxima temperatura del ciclo y se vierte a un ambiente a la temperatura más baja del ciclo.
1.5 Producción de entropía en los ciclos Otto y Diesel
Para un motor que sigue el ciclo Otto de este problema, calcule el rendimiento relativo al que tendría una máquina reversible que operara entre las temperaturas extremas del ciclo. Halle la producción de entropía al cabo de un ciclo completo, suponiendo que el calor se entrega y absorbe a las temperaturas extremas del ciclo.
Realice también estos cálculos para el ciclo Diesel de este problema
1.6 Producción de entropía en un frigorífico
Un frigorífico doméstico mantiene su interior a 3°C, estando la cocina a 24°C, siendo su un coeficiente de desempeño del 25% respecto al máximo y consumiendo una potencia de 150 W. Determine la cantidad de calor extraído por segundo, el calor arrojado al ambiente y la entropía producida por segundo.
1.7 Calor y entropía en un congelador
Una máquina de fabricar cubitos de hielo produce un cubo de 20 g cada 2 minutos, tomando agua de una conducción a temperatura ambiente de 22°C y produciendo cubitos a −3°C. El COPR de la máquina es de 4.0. Calcule:
- El calor que se debe extraer para fabricar cada cubito. Suponiendo que este calor se extrae a ritmo constante, halle el calor extraído cada segundo.
- El trabajo por segundo (potencia) que debe realizar la máquina para fabricar los cubitos.
- La variación de entropía del agua al convertirse en un cubito de hielo.
- El aumento de entropía del ambiente y del universo en cada segundo.
Datos: Calor específico del agua ; Calor específico del hielo
; Entalpía específica de fusión
.
1.8 Comparación de dos producciones de entropía
Halle la variación de entropía del sistema, del ambiente y del universo en los dos casos siguientes:
- Se vierte un litro de agua a 20°C en una piscina a 80°C.
- Se vierte un litro de agua a 80°C en una piscina a 20°C.
1.9 Cálculo de variaciones de entropía
Calcule la variación de entropía del sistema, del entorno y del universo para los procesos descritos en los problemas
- Mezcla de dos cantidades de agua
- Mezcla de agua e hielo
- Calor necesario para evaporar hielo
- Mezcla de hielo y vapor de agua
1.10 Variación de entropía a volumen y presión constante
Un cilindro de 20 cm de diámetro contiene aire inicialmente a 300 K, siendo la presión externa de 100 kPa. En el cilindro se encuentra un émbolo situado inicialmente a 15 cm de distancia del fondo. Se sumerge el cilindro en un baño térmico a 450 K. Calcule la variación de entropía del gas, del entorno y del universo si:
- El émbolo está atornillado en su posición.
- El émbolo puede deslizarse libremente.
1.11 Variación de entropía por compresión
Considere un prisma vertical de 4 cm de lado que contiene aire. El cilindro contiene un pistón que inicialmente está a 10 cm de altura. La temperatura del gas inicialmente es de 300 K, que también es la temperatura ambiente y la presión exterior es de 100 kPa.
Calcule la variación en la entropía del gas, del entorno y del universo en los cuatro siguientes procesos:
- Se coloca bruscamente una pesa de 4 kg encima del émbolo y las paredes son diatermas.
- Se colocan progresivamente 4 kg de arena, grano a grano y las paredes son diatermas.
- Se coloca bruscamente una pesa de 4 kg encima del émbolo y las paredes son adiabáticas.
- Se colocan progresivamente 4 kg de arena, grano a grano y las paredes son adiabáticas.
1.12 Variación de entropía de dos cámaras de gas
Se tiene un cilindro de 20 cm de diámetro y 60 cm de longitud paredes diatermas en el interior del cual hay dos cámaras de gas. En una hay 4 g de H2 y en la otra 4 g de N2. La temperatura de los dos gases es de 300 K, que también es la temperatura exterior. Separando los dos gases hay un émbolo inicialmente fijado en el centro.
Se libera el pistón y se espera hasta que se vuelva a quedar en equilibrio el sistema. Halle el incremento de entropía de cada gas, del sistema, del entorno y del universo.
Si en vez de liberar el pistón le hacemos un agujero, ¿cuáles son las variaciones de entropía correspondientes?
1.13 Calentamiento ineficiente de una casa
En una casa de la que escapa un flujo de calor de 80000 kJ/h cuando la temperatura exterior es de 15°C y la interior se mantiene constante a 22°C se emplean estufas de resistencia eléctrica. Determine el coeficiente de desempeño relativo al máximo posible, la producción de entropía por hora y el consumo extra respecto a una bomba de calor reversible.
1.14 Producción de entropía por descompresión
Se tiene un cilindro de 20 cm de diámetro tapado por un émbolo situado inicialmente a 14 cm del fondo. En el interior del émbolo se encuentra aire comprimido a 4.0 bares, siendo la presión exterior 100 kPa. La temperatura exterior y la inicial del aire de la cámara es 294 K. Las paredes del cilindro y el pistón son completamente adiabáticos.
Inicialmente, el pistón está sujeto por un perno, que se libera bruscamente, produciéndose una expansión abrupta.
Calcule la posición final del émbolo, una vez que se alcanza de nuevo el equilibrio, la temperatura final del aire y la variación de entropía en el proceso.
Halle la variación en la exergía del gas en el proceso.
1.15 Producción de entropía en un refrigerador
Para el refrigerador que funciona según un ciclo Otto inverso del problema 3.12, calcule el rendimiento de la segunda ley (comparando el COP con el máximo posible para las temperaturas exterior y de la habitación), así como el trabajo perdido y la producción de entropía del universo en cada ciclo.
2 Problemas adicionales
2.1 Máquina térmica que alimenta a refrigerador
Un refrigerador que funciona entre una temperatura de -23°C y la temperatura ambiente de 27°C posee un coeficiente de desempeño de 3. Para hacer funcionar este refrigerador se emplea una máquina térmica que funciona entre 327°C y la misma temperatura ambiente, la cual tiene un rendimiento de 0.2. Todo el trabajo producido por la máquina térmica se emplea en hacer funcionar el refrigerador.
- Definimos la eficiencia del conjunto máquina más refrigerador como el calor extraído del foco frío dividido por el calor que es necesario extraer del foco caliente, ¿cuál es la eficiencia del conjunto?
- Si se necesitan extraer 100 J por segundo del foco frío, ¿cuánto calor hay que extraer del foco caliente cada segundo para hacer funcionar el sistema? ¿Cuánto trabajo realiza en un segundo la máquina sobre el refrigerador?
- Calcule la producción de entropía por segundo debida a este conjunto.
- Si tanto el refrigerador como la máquina térmica fueran máquinas de Carnot, ¿cuál sería la eficiencia máxima del conjunto? ¿Qué calor sería necesario sacar del foco caliente en ese caso para extraer 100 J/s del foco frío?
2.2 Aprovechamiento máximo del calor
Se desea caldear una habitación a 22°C cuando la temperatura de la calle es de 5°C. Para ello se dispone de un ladrillo de 50 kg de hierro que previamente se ha calentado a 200°C.
Si se coloca el ladrillo directamente en la habitación, ¿cuánto calor se libera? ¿Cuánta entropía se produce?
Supongamos que en lugar de meter el ladrillo se usa como foco caliente de una máquina reversible que alimenta una bomba de calor también reversible. En ese caso, ¿cuánto calor entra en la habitación? ¿Cuánta entropía se produce?
Dato: Calor específico del hierro