Entrar Página Discusión Historial Go to the site toolbox

Problemas de electrostática en el vacío

De Laplace

(Diferencias entre revisiones)
Línea 62: Línea 62:
[[Fuerza entre dos varillas colineales|'''Solución''']]
[[Fuerza entre dos varillas colineales|'''Solución''']]
-
===[[Campo en el eje de un anillo]]===
+
===[[Campo eléctrico en el eje de un anillo|Campo en el eje de un anillo]]===
Halle el campo eléctrico en todos los puntos del eje de un anillo de radio <math>R</math> sobre el cual hay una densidad de carga uniforme <math>\lambda</math>.
Halle el campo eléctrico en todos los puntos del eje de un anillo de radio <math>R</math> sobre el cual hay una densidad de carga uniforme <math>\lambda</math>.
Línea 68: Línea 68:
   
   
¿A que se reduce si <math>R_1\to 0</math>? ¿Y si <math>R_2\to\infty</math>? Considere en particular el comportamiento en las proximidades de <math>z=0</math>.
¿A que se reduce si <math>R_1\to 0</math>? ¿Y si <math>R_2\to\infty</math>? Considere en particular el comportamiento en las proximidades de <math>z=0</math>.
 +
 +
[[Campo eléctrico en el eje de un anillo|'''Solución''']]
===[[Campo debido a dos planos paralelos]]===
===[[Campo debido a dos planos paralelos]]===

Revisión de 19:49 29 nov 2008

Contenido

1 Modelo semiclásico del átomo de Bohr

Supongamos un protón y un electrón situados a una distancia de un radio de Bohr

  1. Calcule la fuerza eléctrica entre las dos partículas.
  2. Halle la fuerza gravitatoria entre ellas.
  3. Calcule el cociente entre las fuerza eléctrica y la gravitatoria.
  4. Suponga que en lugar a una distancia de un radio de Bohr el protón se encuentra en el centro de la Tierra y el electrón en el centro de la Luna (a 384000 km), ¿cómo cambian las fuerzas eléctrica y gravitatoria? ¿Y el cociente entre ellas? De acuerdo con este resultado, ¿cómo se explica que la fuerza dominante en el sistema Tierra-Luna sea la gravedad?

2 Electroscopio de dos hilos

Un electroscopio mide la carga por la desviación angular de dos esferas idénticas conductoras, suspendidas por cuerdas aislantes de masas despreciables y longitud l. Cada esfera tiene una masa m y está sometida a la gravedad \mathbf{g}. Las cargas pueden considerarse como puntuales e iguales entre sí. Halle la ecuación que liga el semiángulo θ con el valor de la carga total Q depositada en las esferas.

Suponga que la masa de cada esfera es m=10^{-4}\,\mathrm{kg} y la longitud del cable del que penden es 20 cm. Admita asimismo que los ángulos de desviación pueden medirse como mucho con una precisión de 1°. ¿Cuál es la carga mínima que puede medirse con este aparato? ¿Y la carga máxima?

3 Tres cargas en un triángulo equilátero

Tres cargas q1, q2 y q3, se encuentran en los vértices de un triángulo equilátero de lado a = 1cm. Determine la fuerza sobre cada carga cuando:

  1. q_1=q_2=q_3 = 1\,\mu\mathrm{C}.
  2. q_1=q_2=q_3 = -1\,\mu\mathrm{C}.
  3. q_1=q_2=1\,\mu\mathrm{C}, q_3 = -1\,\mu\mathrm{C}.
  4. q_1=q_2=1\,\mu\mathrm{C}, q_3 = -2\,\mu\mathrm{C}.

Solucion

4 Cuatro cargas en un rectángulo

Una carga puntual q_1 = 108\,\mathrm{nC} se encuentra situada en el origen de coordenadas. En x=25\,\mathrm{mm}, y=z=0\, se halla una segunda carga q2. En x=16\,\mathrm{mm}, y=12\,\mathrm{mm} se encuentra una tercera carga q3.

Calcule el valor que deben tener q2 y q3 si, ocupando las´posiciones indicadas, se desea que sea nula la fuerza sobre una carga q_4=10\,\mathrm{nC} situada en x=9\,\mathrm{mm}, y=-12\,\mathrm{mm}, z = 0.

5 Tres cargas en un anillo

Se dispone de tres cargas, una de valor Q y las otras dos de valor q. Estas cargas se ensartan en un anillo circular de radio R sobre el cual pueden deslizar libremente. Determine la ecuación para los ángulos del triángulo que forman las tres cargas. ¿Cuál es la solución para los casos Q\gg q, Q=q\, y Q\ll q$?

6 Fuerza entre dos hilos cargados

Un cable formado por dos hilos paralelos produce un campo eléctrico similar al producido por dos líneas infinitas con densidad de carga λ y − λ, situadas a una distancia D una de la otra.

Se trata de hallar la fuerza por unidad de longitud con que se atraen los dos hilos. Para ello, calcule:

  1. El campo eléctrico en cualquier punto del espacio, creado por un segmento rectilíneo de longitud L, sobre el cual existe una densidad de carga uniforme λ.
  2. A partir del resultado anterior, halle el campo en cualquier punto debido a una línea de carga uniforme infinitamente larga.
  3. Halle la fuerza que uno de los hilos produce sobre un segmento de longitud h del otro hilo.

Solución

7 Campo eléctrico entre dos varillas

Dos varillas rectilíneas de longitud L están situadas paralelamente a una distancia D. Las varillas poseen cargas \pm Q distribuidas uniformemente.
  1. Halle aproximadamente el campo eléctrico en un punto P equidistante de ambas varillas, para el caso D\gg L.
  2. Calcule, también de forma aproximada, el valor del campo en el mismo punto P, para el caso D\ll L.
  3. Calcule el valor exacto del campo eléctrico en dicho punto P, para un valor arbitrario de D.
  4. Compare los valores exactos y aproximados para el caso Q=1\,\mathrm{mC}, L=2\,\mathrm{cm}, y
    1. D=2\,\mathrm{mm}
    2. D=40\,\mathrm{cm}

Solución

8 Fuerza entre dos varillas colineales

Calcule la fuerza entre dos varillas colineales, de longitudes L1 y L2, que almacenan respectivamente cargas Q1 y Q2, cuando sus extremos más próximos distan una cantidad a.

Imagen:varillascolineales1.png

Solución

9 Campo en el eje de un anillo

Halle el campo eléctrico en todos los puntos del eje de un anillo de radio R sobre el cual hay una densidad de carga uniforme λ.

A partir de este resultado, calcule el campo creado por una corona circular de radios R1 y R2 (R1 < R2), sobre la cual hay una densidad de carga uniforme σ0, en los puntos de su eje.

¿A que se reduce si R_1\to 0? ¿Y si R_2\to\infty? Considere en particular el comportamiento en las proximidades de z = 0.

Solución

10 Campo debido a dos planos paralelos

Un condensador de placas planas puede aproximarse por dos dos planos paralelos, separados una distancia a. Uno de ellos, situado en x = − a / 2 posee una distribución de carga uniforme σ0, mientras que la del otro es − σ0. Halle el campo eléctrico en todos los puntos del espacio.

11 Campo debido a una superficie esférica cargada

Una esfera de radio R almacena una carga Q distribuida uniformemente en su superficie. Calcule el campo eléctrico producido por la esfera en todos los puntos del espacio

  1. Aplicando las leyes de la electrostática
  2. Por integración directa

Solución

12 Campo debido a una esfera cargada uniformemente

Una esfera de radio R almacena una carga Q distribuida uniformemente en su volumen.

  1. Calcule el campo eléctrico producido por la esfera en todos los puntos del espacio.
  2. Halle la fuerza que experimenta un dipolo \mathbf{p} situado en el interior de esta nube de carga.

13 Una esfera conductora rellena

Una superficie esférica conductora de radio R, puesta a tierra, contiene en su interior una distribución de carga no uniforme, cuya densidad de carga es de la forma
\rho =\begin{cases}A r(R-r) & (r< R) \\ 0 & (r>R)\end{cases}
  1. Calcule el campo eléctrico en todos los puntos del espacio.
  2. Calcule el valor de la carga almacenada en la esfera conductora.
  3. Halle el potencial eléctrico en el centro de la esfera.
    1. A partir del campo eléctrico.
    2. Por integración directa a partir de las densidades de carga.
  4. Halle la energía electrostática almacenada en el sistema.

14 Flujo del campo eléctrico de una carga

Halle el flujo del campo eléctrico debido a una carga puntual q a través de un disco cuyo eje pasa por el punto donde se encuentra la carga.

El disco tiene radio R y la distancia de la carga al plano del disco es h.

  1. Utilizando coordenadas cilíndricas
  2. Usando coordenadas esféricas (Sugerencia: En lugar del disco emplee otra superficie que abarque el mismo ángulo sólido).

15 Campo eléctrico de una esfera horadada

En un volumen en forma de esfera (de radio 3R) en la que se han hecho dos huecos (también esféricos, uno de radio 2R y otro de radio R) se distribuye uniformemente una carga Q.
  1. Calcule el campo eléctrico en el punto P, de tangencia de los dos huecos.
  2. Halle el potencial eléctrico en el mismo punto P.
  3. Calcule los dos primeros momentos multipolares del sistema, tomando como origen de coordenadas el centro de la esfera grande.

Solución

16 Campo de un anillo no uniforme

En el plano XY se encuentra una distribución de carga lineal, formando un anillo, de radio R y con una distribución de carga no uniforme dada, en coordenadas cilíndricas, por

\lambda=\lambda_0\cos\varphi'    \varphi'\in(-\pi,\pi]
  1. Halle el potencial eléctrico producido por el anillo en los puntos del eje Z.
  2. Calcule el campo eléctrico producido por el anillo en el mismo eje.
  3. Demuestre que, para puntos alejados, su campo se comporta como el de un dipolo, ¿cuál sería el valor y la orientación de dicho dipolo?

17 Potencial de dos cargas puntuales

Halle el potencial creado por dos cargas q1, q2 situadas a una distancia a una de la otra. Demuestre que la superficie equipotencial V = 0 es una esfera.

Solución

18 Flujo del campo eléctrico a través de una superficie abierta

Se tienen dos cargas puntuales de valor q situadas en los puntos \pm(a/2)\mathbf{u}_{y}. Halle el flujo del campo eléctrico a través de un triángulo con vértices en los puntos a\mathbf{u}_{x}, a\mathbf{u}_{y} y a\mathbf{u}_{z}.

19 Diferencia de potencial entre dos discos

Se tienen dos discos plásticos de radio 1 cm y espesor despreciable, sobre los cuales se distribuyen de manera uniforme cargas de +1 nC y −1nC respectivamente. Estos discos se disponen paralelamente a una distancia a. Determine

  1. El valor aproximado de la diferencia de potencial entre los centros cuando la distancia a = 1mm
  2. El valor aproximado del voltaje si a = 1 m.
  3. Determine exactamente la diferencia de potencial entre los centros para cualquier valor de a. Compare el resultado con los dos anteriores. ¿Cuánto es aproximadamente el error cometido en el primer apartado? ¿Y en el segundo?

20 Potencial en el centro de una esfera

Calcule el potencial eléctrico en el centro de una esfera de radio R, cargada con una carga Q0 distribuida…

  1. uniformemente en su superficie
  2. de forma no uniforme en su superficie, con densidad σs = σ0cosθ.
  3. uniformemente en su volumen
  4. en su volumen con una densidad ρ = Ar (calcule previamente el valor de la constante A).

Solución

21 Potencial de una línea de carga

Determine el potencial eléctrico creado en todos los puntos del espacio por una línea recta infinita, cargada con una densidad uniforme λ0, estando el origen de potencial situado a una distancia $a$ de la línea. ¿Por qué no puede tomarse el infinito como origen de potencial?

A partir de este resultado, calcule el potencial creado por dos líneas infinitas de carga, con densidades uniformes + λ0 y − λ0, situadas paralelamente a una distancia 2a, tomando como origen de potencial un punto equidistante de ambas líneas.

22 Energía de tres cargas en un triángulo

Calcule la energía electrostática almacenada en cada una de las cuatro configuraciones del problema de tres cargas en un triángulo equilátero.

23 Trabajo para reunir cuatro cargas

Para la configuración del problema de cuatro cargas en un rectángulo, calcule el trabajo necesario para llevar la carga q4 desde el infinito hasta su posición final.

24 Trabajo para cuatro cargas en un cuadrado

Cuatro cargas puntuales se sitúan en los vértices de un cuadrado de lado a. Dos de ellas, situadas en vértices adyacentes, son de valor + q, mientras que las otras dos valen q.

Calcule el trabajo para reunir esta distribución de cargas.

Suponga que una de las cargas positivas se intercambia con la negativa situada en el vértice opuesto, ¿qué trabajo hay que realizar para esta operación?

Si la carga positiva se permuta con la negativa situada en el vértice vecino, ¿cuál será en este caso, el trabajo realizado?

25 Carga, potencial y energía de un campo dado

En el espacio vacío se ha detectado un campo electrostático con simetría esférica respecto de un punto fijo O, cuya función de campo viene dada por la expresión \mathbf{E}(\mathbf{r})=E(r)\mathbf{u}_{r}, con

E(r) = \begin{cases}E_0\displaystyle\frac{r}{a} & 0\leq r<a \\ & \\ E_0 & a< r < b \\ & \\ E_0\left(\displaystyle\frac{a}{r}\right)^2 & b<r \end{cases}

siendo r la distancia desde O al punto donde se evalúa el campo y E0, a y b$ son constantes conocidas.

  1. Determine cómo es la distribución de carga eléctrica que da lugar al campo descrito.
  2. Calcule la carga total de dicha distribución.
  3. Obtenga el valor del potencial eléctrico en O (\mathbf{r} = \mathbf{0}).
  4. ¿Cuánto vale la energía electrostática del sistema?

Solución

26 Campo y carga de un potencial conocido

El potencial eléctrico en todos los puntos del espacio viene dado por la ecuación

\phi = V_0 \mathrm{e}^{-k \left|y\right|}\cos(k x)

con k y V0 constantes.

  1. Halle el campo eléctrico en todos los puntos del espacio.
  2. Calcule la densidad de carga que crea este campo eléctrico.

Solución

27 Energía de esferas concéntricas

Halle la energía electrostática almacenada en una superficie esférica de radio a, que almacena una carga Q, distribuida uniformemente sobre ella.

Calcule la energía electrostática almacenada en un sistema de dos superficies esféricas concéntricas de radios a y b, cargadas, respectivamente con cargas + Q y Q, distribuidas uniformemente.

¿Se verifica el principio de superposición, esto es, es la energía de las dos esferas la suma de las energías de cada esfera por separado?

Solución

28 Energía de una esfera cargada

Calcule la energía libre electrostática de:

  1. Una carga Q distribuida uniformemente sobre la superficie de una esfera de radio R.
  2. Una carga Q distribuida uniformemente en el volumen de una esfera de radio R.
  3. ¿Cuál de las dos configuraciones posee una menor energía almacenada? ¿Cómo se interpreta este resultado si se usa la integral de la densidad de energía \varepsilon_0 E^2/2?
  4. El llamado radio clásico del electrón se obtiene describiendo esta partícula como una pequeña esfera de radio a, cargada uniformemente en su superficie. Suponiendo que la energía electrostática almacenada en el sistema equivale a la masa del electrón de acuerdo con la ley E = mc2, halle el valor numérico del radio que debería tener el electrón. Repita ahora el cálculo para el caso de un protón. ¿Es lógico el resultado que se obtiene?

29 Fuerza entre un anillo y un dipolo

Un anillo circular de radio a, almacena una carga Q distribuida uniformemente. En el centro del anillo se encuentra un dipolo puntual \mathbf{p}, alineado según el eje de la espira.

  1. Determine la fuerza que el dipolo ejerce sobre la espira.
  2. Halle la energía que tiene el dipolo por encontrarse en el campo de la espira.
  3. Calcule la fuerza que la espira produce sobre el dipolo. ¿Se verifica la tercera ley de Newton?
  4. Calcule el par que la espira ejerce sobre el dipolo.

Solución

30 Interacción entre dos dipolos eléctricos

Se tiene un dipolo puntual \mathbf{p}_1=p\mathbf{u}_{z} sobre el cual situamos el origen de coordenadas. Se coloca un segundo dipolo de la misma magnitud, pero diferente orientación, en el punto a\mathbf{u}_{z}.

  1. Halle la fuerza y el par que el primer dipolo ejerce sobre el segundo si este está orientado como \mathbf{p}_2 = p\mathbf{u}_{z}.
  2. Calcule el valor numérico de esta fuerza si los dos dipolos son moléculas de agua (p= 6.14\times 10^{-30} \mathrm{C{\cdot}m}) situadas a una distancia de 1\,\mathrm{nm}.
  3. Repita el cálculo si \mathbf{p}_2=p\mathbf{u}_{x}.

31 Cálculo de momentos multipolares

Halle los momentos monopolar (carga) y dipolar de las siguientes distribuciones de cargas. Describa el campo y el potencial eléctrico a gran distancia de ellas:

  1. Dos cargas de valor + q en los puntos \pm a\mathbf{u}_{z}
  2. Tres cargas positivas + q en los puntos a\mathbf{u}_{x}, a\mathbf{u}_{y}, a\mathbf{u}_{z} y tres negativas q en -a\mathbf{u}_{x}, -a\mathbf{u}_{y}, -a\mathbf{u}_{z}.
  3. Una varilla vertical de longitud L, centrada en el origen, con densidad de carga uniforme λ0.
  4. La misma varilla con una distribución de carga λ = kz.
  5. Una superficie esférica sobre la cual hay una distribución de carga σs = σ0cosθ.
  6. La misma superficie con distribuciones \sigma_s=\sigma_0\cos^2\theta\,, \sigma_s=\sigma_0\,\operatorname{sen}\,\theta y \sigma_s=\sigma_0\,\operatorname{sen}\,\theta\cos\phi
  7. Una esfera con densidad de carga ρ = ρ0cosθ.

32 Potencial y campo en el centro de una semicorona esférica

Se tiene el sistema de la figura, formado por una semicorona esférica de radios R y 2R, con una densidad volumétrica de carga uniforme ρ0. Se pide
  1. Calcular el potencial eléctrico en el punto O.
  2. Calcular el trabajo necesario para trasladar una carga q desde el punto A hasta el punto B.
  3. Calcular el campo eléctrico en el punto O.
  4. Calcular, hasta el segundo orden de aproximación, la expresión aproximada del potencial en puntos alejados del sistema.


Solución

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace