Entrar Página Discusión Historial Go to the site toolbox

Problemas de corriente eléctrica

De Laplace

(Diferencias entre revisiones)
({{nivel|3}} Descarga de un sistema "corte de helado")
 
(43 ediciones intermedias no se muestran.)
Línea 1: Línea 1:
-
===[[Problema:Flujo de líquido por una tubería]]===
+
=={{nivel|1}} [[Flujo de líquido por una tubería]]==
Por el interior de una tubería cilíndrica de radio <math>a</math> fluye un líquido con una velocidad, dependiente de la distancia al eje, <math>\rho</math>, como  
Por el interior de una tubería cilíndrica de radio <math>a</math> fluye un líquido con una velocidad, dependiente de la distancia al eje, <math>\rho</math>, como  
Línea 9: Línea 9:
# Si se desea que por la superficie del tubo circule una corriente superficial <math>\mathbf{K}</math>, de forma que la corriente total sea nula, ¿cuánto debe valer <math>\mathbf{K}</math>?
# Si se desea que por la superficie del tubo circule una corriente superficial <math>\mathbf{K}</math>, de forma que la corriente total sea nula, ¿cuánto debe valer <math>\mathbf{K}</math>?
-
===[[Velocidad de arrastre]]===
+
=={{nivel|1}} [[Velocidad de arrastre en un hilo]]==
-
Halle la velocidad de arrastre de los electrones en un cable de plata de 0.5 mm&sup2; de sección por el cual circula una corriente de 100 mA.
+
Halle la velocidad de arrastre de los electrones en un cable de plata de 0.5&thinsp;mm&sup2; de sección por el cual circula una corriente de 100&thinsp;mA.
-
===[[Nube de carga de radio variable]]===
+
=={{nivel|2}} [[Nube de carga de radio variable]]==
-
[[Image:nubevariable.gif|left]]Una nube esférica de carga (compuesta de una distribución de cargas puntuales flotando en el vacío) se contrae y dilata, variando el radio de la esfera como <math>R(t)=R_0+a \cos(\omega t)</math>. La carga total de la nube, <math>Q_0</math>, se encuentra distribuida en todo momento de forma uniforme en el volumen de la esfera.
+
Una nube esférica de carga (compuesta de una distribución de cargas puntuales flotando en el vacío) se contrae y dilata, variando el radio de la esfera como <math>R(t)=R_0+a \cos(\omega t)</math>. La carga total de la nube, <math>Q_0</math>, se encuentra distribuida en todo momento de forma uniforme en el volumen de la esfera.
A partir de la ley de conservación de la carga, calcule la densidad de corriente de conducción en la nube. Puede suponer que <math>\mathbf{J} = J(r)\mathbf{u}_{r}</math> y que esta densidad no es infinita en el centro de la esfera.
A partir de la ley de conservación de la carga, calcule la densidad de corriente de conducción en la nube. Puede suponer que <math>\mathbf{J} = J(r)\mathbf{u}_{r}</math> y que esta densidad no es infinita en el centro de la esfera.
Línea 21: Línea 21:
¿Habrá campo magnético en el sistema?
¿Habrá campo magnético en el sistema?
-
[[Nube de carga de radio variable|'''Solución''']]
+
<center>[[Image:nubevariable.gif]]</center>
-
===[[Resistencia de un tubo]]===
+
=={{nivel|2}} [[Resistencia de un tubo]]==
-
[[Image:tubo.gif|right]]Sea un tubo cilíndrico, de radio interior <math>a</math> y exterior <math>b</math>, y longitud <math>h</math>, de un material de conductividad <math>\sigma</math>. Calcule la resistencia eléctrica
+
Sea un tubo cilíndrico, de radio interior <math>a</math> y exterior <math>b</math>, y longitud <math>h</math>, de un material de conductividad <math>\sigma</math>. Calcule la resistencia eléctrica
# Entre las dos bases.
# Entre las dos bases.
# Entre la cara interior y la exterior.
# Entre la cara interior y la exterior.
-
===[[Cable bimetálico]]===
+
<center>[[Image:tubo.gif]]</center>
-
[[Image:cableconnucleo.gif|right]]Entre los distintos tipos de cable empleados en la industria, se encuentra el de ''aluminio revestido de cobre''. Está formado por un núcleo de aluminio de radio <math>a</math> (suponga <math>a=2\,\mathrm{mm}</math>), rodeado por una capa de cobre, de radio exterior <math>b</math> (sea <math>b= 3\,\mathrm{mm}</math>).  
+
 
 +
=={{nivel|2}} [[Cable bimetálico]]==
 +
Entre los distintos tipos de cable empleados en la industria, se encuentra el de ''aluminio revestido de cobre''. Está formado por un núcleo de aluminio de radio <math>a</math> (suponga <math>a=2\,\mathrm{mm}</math>), rodeado por una capa de cobre, de radio exterior <math>b</math> (sea <math>b= 3\,\mathrm{mm}</math>).  
# Calcule la resistencia de cable de esta clase de longitud <math>h=10\,\mathrm{km}</math>.
# Calcule la resistencia de cable de esta clase de longitud <math>h=10\,\mathrm{km}</math>.
# Determine la corriente que circula por cada metal cuando se aplica una diferencia de potencial <math>V_0=100\,\mathrm{V}</math> al cable anterior.
# Determine la corriente que circula por cada metal cuando se aplica una diferencia de potencial <math>V_0=100\,\mathrm{V}</math> al cable anterior.
-
===[[Conductividad del suelo]]===
+
<center>[[Image:cableconnucleo.gif]]</center>
-
[[Imagen:pilotes.gif|right]]Para determinar la conductividad &sigma; del suelo se mide la corriente entre dos electrodos clavados en tierra y sometidos a una cierta diferencia de potencial.
+
 
 +
=={{nivel|3}} [[Conductividad del suelo]]==
 +
Para determinar la conductividad &sigma; del suelo se mide la corriente entre dos electrodos clavados en tierra y sometidos a una cierta diferencia de potencial.
# Suponga en primer lugar sólo un electrodo hemisférico de radio <math>a</math>, perfectamente conductor, puesto a un potencial <math>V_1</math> respecto a puntos muy alejados. En el estado estacionario, determínese la distribución de potencial en el suelo. Admita que el potencial depende exclusivamente de la distancia al centro del electrodo. A partir de este resultado, calcule la resistencia entre el electrodo y el infinito. Suponga que el suelo posee conductividad igual en todos sus puntos.
# Suponga en primer lugar sólo un electrodo hemisférico de radio <math>a</math>, perfectamente conductor, puesto a un potencial <math>V_1</math> respecto a puntos muy alejados. En el estado estacionario, determínese la distribución de potencial en el suelo. Admita que el potencial depende exclusivamente de la distancia al centro del electrodo. A partir de este resultado, calcule la resistencia entre el electrodo y el infinito. Suponga que el suelo posee conductividad igual en todos sus puntos.
# Suponga ahora dos electrodos del tipo anterior, del mismo radio, y muy alejados entre sí. Si se conectan por el aire mediante un cable ideal y una fuente de continua de tensión <math>V_0</math>, ¿qué corriente circula de un electrodo al otro?
# Suponga ahora dos electrodos del tipo anterior, del mismo radio, y muy alejados entre sí. Si se conectan por el aire mediante un cable ideal y una fuente de continua de tensión <math>V_0</math>, ¿qué corriente circula de un electrodo al otro?
-
# Si para una tensión de <math>100\,\mathrm{V}</math> entre dos electrodos de <math>10\,\mathrm{cm}</math> de radio se mide una corriente de <math>0.63\,\mathrm{A}</math>, ¿cuánto vale la conductividad del suelo?
+
# Si para una tensión de 100&thinsp;V entre dos electrodos de 10&thinsp;cm de radio se mide una corriente de 0.63&thinsp;A, ¿cuánto vale la conductividad del suelo?
 +
 
 +
<center>[[Imagen:pilotes.gif]]</center>
 +
 
 +
=={{nivel|1}} [[Bombillas puestas en serie]]==
 +
Se colocan en serie dos bombillas de potencias nominales 100&thinsp;W y 60&thinsp;W y se conectan a la red. Si la potencia radiada es proporcional a la potencia consumida, ¿cuál de las dos bombillas darán más luz? ¿En qué proporción?
 +
 
 +
=={{nivel|3}} [[Resistor conectado a generador real]]==
 +
El espacio entre dos placas conductoras circulares, planas y paralelas de radio <math>b</math>, separadas una distancia <math>a</math>, se encuentra lleno de un material de permitividad <math>\varepsilon</math>, conductividad <math>\sigma</math> y permeabilidad <math>\mu_0</math>. Las placas se encuentran conectadas a un generador real de f.e.m. <math>V_0</math> y resistencia interna <math>r</math>. En el estado estacionario, determine
 +
# La densidad de corriente y el campo eléctrico en el espacio entre las placas. Desprecie los efectos de borde.
 +
# La potencia total disipada en el volumen entre las placas. ¿Para qué valor de la conductividad es máxima esta potencia disipada?
 +
# La energía eléctrica almacenada en el material.
 +
# Sabiendo que el campo magnético entre las placas es acimutal y dependiente sólo de la distancia al eje, calcule el valor de este campo magnético.
 +
 
 +
=={{nivel|2}} [[Resistor con dos capas]]==
 +
Se tiene un dispositivo formado por dos placas metálicas perfectamente conductoras, de sección cuadrada de lado <math>L=10\,\mathrm{cm}</math> situadas paralelamente a 4\,mm de distancia
 +
 
 +
Entre las placas se encuentran dos capas de dieléctricos no ideales de espesor <math>a_1=3\,\mathrm{mm}</math> y <math>a_2=1\,\mathrm{mm}</math>, respectivamente, de permitividades <math>\varepsilon_1 = 10\,\mathrm{pF}/\mathrm{m}</math> y <math>\varepsilon_2=30\,\mathrm{pF}/\mathrm{m}</math> y conductividades <math>\sigma_1=6\,\mathrm{mS}/\mathrm{m}</math> y
 +
<math>\sigma_2=2\,\mathrm{mS}/\mathrm{m}</math>. Se aplica un voltaje constante entre las placas <math>V_0 = 12\,\mathrm{V}</math>.
 +
 
 +
# Determine el valor de la densidad de corriente, el campo eléctrico y el vector desplazamiento en todos los puntos entre las placas.
 +
# Halle la intensidad de corriente que atraviesa el dispositivo.
 +
# Calcule las densidades de carga libre en todos los medios y superficies del sistema, así como la carga libre total acumulada en cada uno de los medios y superficies.
 +
# Halle la potencia disipada y la energía almacenada en el sistema.
 +
 
 +
<center>[[Archivo:resistor-dos-capas.png]]</center>
-
===[[Corrientes atmosféricas]]===
+
=={{nivel|3}} [[Corrientes atmosféricas]]==
La resistividad del aire en la atmósfera decrece exponencialmente con la altura como
La resistividad del aire en la atmósfera decrece exponencialmente con la altura como
Línea 70: Línea 99:
# Estime el tiempo que tardaría la atmósfera en descargarse si no existiera un mecanismo generador
# Estime el tiempo que tardaría la atmósfera en descargarse si no existiera un mecanismo generador
-
[[Corrientes atmosféricas|'''Solución''']]
+
=={{nivel|2}} [[Resistencia de una soldadura]]==
-
 
+
-
===[[Resistencia de una soldadura]]===
+
[[Image:soldadura.gif|left]]Tras una rotura de un cable de cobre (de resistividad <math>r_1</math>) de sección <math>S</math> y gran longitud, se procede a unir los dos pedazos mediante una soldadura. Como consecuencia de la presencia de óxido la resistividad
[[Image:soldadura.gif|left]]Tras una rotura de un cable de cobre (de resistividad <math>r_1</math>) de sección <math>S</math> y gran longitud, se procede a unir los dos pedazos mediante una soldadura. Como consecuencia de la presencia de óxido la resistividad
del cable aumenta hasta un valor <math>r_2</math> en una región alrededor del punto de contacto, pudiéndose describir matemáticamente según la ley
del cable aumenta hasta un valor <math>r_2</math> en una región alrededor del punto de contacto, pudiéndose describir matemáticamente según la ley
Línea 82: Línea 109:
# Si la potencia máxima por unidad de volumen que soporta el hilo antes de fundirse es <math>p=700\,\mathrm{W}/\mathrm{m}^3</math>, determine la intensidad de corriente máxima que puede circular por el cable antes de la soldadura y después de ella.
# Si la potencia máxima por unidad de volumen que soporta el hilo antes de fundirse es <math>p=700\,\mathrm{W}/\mathrm{m}^3</math>, determine la intensidad de corriente máxima que puede circular por el cable antes de la soldadura y después de ella.
-
===[[Matriz de conductancia de bloques]]===
+
=={{nivel|2}} [[Fusible de plomo]]==
 +
Para construir un fusible se intercala un hilo de plomo (<math>\sigma =
 +
4.84\times 10^5\,\mathrm{S}/\mathrm{m}</math>) en el camino de un hilo de cobre de 0.5mm de radio. La pieza de plomo está formado por un hilo de 0.1mm de radio y 1cm de longitud, unido al cobre por dos troncos de cono, también de plomo, de 0.5cm de longitud.
 +
 
 +
# La condición de fusión la da el que en un intervalo de tiempo de 1s, en la pieza de plomo se disipe una energía de 700mJ/mm&sup3;. Calcule la intensidad máxima que puede circular por el hilo de cobre para que no se alcance este límite.
 +
# Calcule la resistencia de la pieza de plomo, admitiendo que el sistema se comporta como un conductor filiforme de sección variable.
 +
 
 +
<center>[[Imagen:hilofusible.gif]]</center>
 +
 
 +
=={{nivel|2}} [[Matriz de conductancia de bloques]]==
 +
 
 +
[[Imagen:4prismas.gif|300px|right]]
 +
 
Se tiene un sistema de cuatro electrodos tal como se indica en la figura. Uno de ellos (electrodo "0") es un  prisma cuadrado hueco de lado interior 43 mm y longitud 50 mm. Este electrodo se encuentra siempre a tierra.
Se tiene un sistema de cuatro electrodos tal como se indica en la figura. Uno de ellos (electrodo "0") es un  prisma cuadrado hueco de lado interior 43 mm y longitud 50 mm. Este electrodo se encuentra siempre a tierra.
Línea 94: Línea 133:
# Si el electrodo 2 se encuentra a tensión <math>V_0=100\,\mathrm{V}</math>, el 1 se deja desconectado y el 3 se pone a tierra, ¿cuáles son las corrientes que llegan a cada conductor y las tensiones de cada uno? ¿Y si también se desconecta el 3?
# Si el electrodo 2 se encuentra a tensión <math>V_0=100\,\mathrm{V}</math>, el 1 se deja desconectado y el 3 se pone a tierra, ¿cuáles son las corrientes que llegan a cada conductor y las tensiones de cada uno? ¿Y si también se desconecta el 3?
-
===[[Pista en forma de H]]===
+
=={{nivel|2}} [[Intersección de dos pistas]]==
-
[[Image:PistaH.gif|right]] Se tiene un circuito impreso en forma de "H" de un material de conductividad <math>\sigma</math>, con cuatro terminales, una de las cuales se encuentra permanentemente a tierra. Los brazos de la H y el tabique central poseen longitud <math>b</math>. Los cuatro brazos tienen anchura <math>a</math>, (<math>a\ll b</math>) mientras que el tramo central posee anchura <math>2a</math>, según indica la figura. El espesor de toda la pista es <math>c</math>.
+
[[Imagen:cruz-griega.gif|right]]Una intersección de dos pistas en un circuito integrado se puede modelar como una cruz con brazos de igual longitud a la cual están conectados tres electrodos &ldquo;vivos&rdquo; (&ldquo;1&rdquo; a &ldquo;3&rdquo;) y uno de tierra (&ldquo;0&rdquo;), según se indica en la figura. Se sabe que cuando el electrodo 1 se encuentra a una tensión de +12&thinsp;V y el resto a tierra, por el electrodo 1 entra una corriente de +7.04&thinsp;mA, mientras que por el conductor 2 entra (según el criterio usual de signos) una de &minus;2.63&thinsp;mA.
 +
 
 +
# Determine la corriente que entra (siguiendo el mismo criterio) por el electrodo 3 en la situación anterior.
 +
# Halle la matriz de coeficientes de conductancia del sistema de tres electrodos vivos.
 +
# Construya un circuito equivalente para el sistema de electrodos, que no emplee nodos intermedios. Halle los valores de las resistencias de este circuito.
 +
# Si el electrodo 1 se deja a +12&thinsp;V y el 3 a tierra, pero el 2 se pone a &minus;5&thinsp;V. ¿Cuánta corriente entrará por cada electrodo vivo?
 +
# Para el caso original y para el del apartado anterior, ¿cuánta potencia se disipa en el sistema?
 +
 
 +
=={{nivel|2}} [[Pista en forma de H]]==
 +
Se tiene un circuito impreso en forma de "H" de un material de conductividad <math>\sigma</math>, con cuatro terminales, una de las cuales se encuentra permanentemente a tierra. Los brazos de la H y el tabique central poseen longitud <math>b</math>. Los cuatro brazos tienen anchura <math>a</math>, (<math>a\ll b</math>) mientras que el tramo central posee anchura <math>2a</math>, según indica la figura. El espesor de toda la pista es <math>c</math>.
# Determine la matriz de los coeficientes de conductancia, <math>G_{ij}</math>, correspondiente a los tres terminales libres. Desprecie la pequeña contribución de las esquinas donde confluyen los brazos.
# Determine la matriz de los coeficientes de conductancia, <math>G_{ij}</math>, correspondiente a los tres terminales libres. Desprecie la pequeña contribución de las esquinas donde confluyen los brazos.
Línea 102: Línea 150:
# En la configuración anterior se corta la conexión a tierra del electrodo 2. En el nuevo estado estacionario, ¿se consume más o menos potencia que antes de la desconexión? ¿Cuánto?
# En la configuración anterior se corta la conexión a tierra del electrodo 2. En el nuevo estado estacionario, ¿se consume más o menos potencia que antes de la desconexión? ¿Cuánto?
-
===[[Pista con varias terminales]]===
+
<center>[[Image:dimensiones-pista-H.png]]</center>
 +
 
 +
=={{nivel|2}} [[Pista con varias terminales]]==
[[Image:pistatermianles.gif|right]]Se tiene un modelo de circuito integrado formado por una pista con las dimensiones indicadas en la figura. La pista es de grafito (<math>\sigma=7.3\times 10^{5}\,\mathrm{S}/\mathrm{m}</math>). El espesor de la pista vale <math>d=1\,\mathrm{mm}</math> en todas partes. La anchura de cada segmento rectilíneo es <math>a=4\,\mathrm{mm}</math>, salvo el central, que tiene una anchura de <math>2\,\mathrm{mm}</math>. Todas las fuentes y conexiones exteriores son ideales (sin resistencia).  
[[Image:pistatermianles.gif|right]]Se tiene un modelo de circuito integrado formado por una pista con las dimensiones indicadas en la figura. La pista es de grafito (<math>\sigma=7.3\times 10^{5}\,\mathrm{S}/\mathrm{m}</math>). El espesor de la pista vale <math>d=1\,\mathrm{mm}</math> en todas partes. La anchura de cada segmento rectilíneo es <math>a=4\,\mathrm{mm}</math>, salvo el central, que tiene una anchura de <math>2\,\mathrm{mm}</math>. Todas las fuentes y conexiones exteriores son ideales (sin resistencia).  
Línea 110: Línea 160:
# En la situación del apartado anterior, ¿cuánto vale aproximadamente la densidad de corriente en cada tramo recto del circuito? ¿Y la potencia disipada por unidad de volumen?
# En la situación del apartado anterior, ¿cuánto vale aproximadamente la densidad de corriente en cada tramo recto del circuito? ¿Y la potencia disipada por unidad de volumen?
-
[[Pista con varias terminales|'''Solución''']]
+
=={{nivel|4}} [[Modelo esférico de generador]]==
-
 
+
-
===[[Modelo esférico de generador]]===
+
Como modelo ideal de generador suponga el siguiente sistema: una esfera de radio <math>a</math> de conductividad <math>\sigma_1</math> se encuentra inmersa en un medio de conductividad <math>\sigma_2</math> que se extiende hasta el infinito. En el interior de la esfera actúa una fuerza no electrostática por unidad de carga <math>\mathbf{E}' = E'_0\mathbf{u}_{z}</math>, constante y uniforme.
Como modelo ideal de generador suponga el siguiente sistema: una esfera de radio <math>a</math> de conductividad <math>\sigma_1</math> se encuentra inmersa en un medio de conductividad <math>\sigma_2</math> que se extiende hasta el infinito. En el interior de la esfera actúa una fuerza no electrostática por unidad de carga <math>\mathbf{E}' = E'_0\mathbf{u}_{z}</math>, constante y uniforme.
# Escriba las ecuaciones y condiciones de salto para la densidad de corriente, el campo y el potencial eléctrico en todo el espacio.  
# Escriba las ecuaciones y condiciones de salto para la densidad de corriente, el campo y el potencial eléctrico en todo el espacio.  
# Sabiendo que en el interior de la esfera el potencial es de la forma
# Sabiendo que en el interior de la esfera el potencial es de la forma
-
#:<center><math>\phi_1 = A r\cos\theta \qquad (r<a)</math></center>
+
:<center><math>\phi_1 = A r\cos\theta \qquad (r<a)</math></center>
-
#:y en el exterior de ella
+
::y en el exterior de ella
-
#:<center><math>\phi_1 = \frac{B}{r^2}\cos\theta \qquad (r>a)</math></center>
+
::<center><math>\phi_1 = \frac{B}{r^2}\cos\theta \qquad (r>a)</math></center>
-
#:calcule las constantes <math>A</math> y <math>B</math>.
+
::calcule las constantes <math>A</math> y <math>B</math>.
-
# Halle la potencia desarrollada por el campo eléctrico en el interior y el exterior de la esfera.
+
<ol start="3">
-
# Considerando que la corriente es la que atraviesa el plano ecuatorial de la esfera (<math>z=0</math>, <math>r<a</math>) determine la fuerza electromotriz, la resistencia interna y la externa del circuito equivalente.
+
<li> Halle la potencia desarrollada por el campo eléctrico en el interior y el exterior de la esfera.</li>
-
# ¿A qué tienden los resultados cuando <math>\sigma_1 \ll \sigma_2</math>? ¿Y cuando <math>\sigma_1\gg \sigma_2</math>?
+
<li> Considerando que la corriente es la que atraviesa el plano ecuatorial de la esfera (<math>z=0</math>, <math>r<a</math>) determine la fuerza electromotriz, la resistencia interna y la externa del circuito equivalente.</li>
 +
<li> ¿A qué tienden los resultados cuando <math>\sigma_1 \ll \sigma_2</math>? ¿Y cuando <math>\sigma_1\gg \sigma_2</math>?</li>
 +
</ol>
-
===[[Descarga de un condensador]]===
+
=={{nivel|1}} [[Pulso de corriente]]==
 +
Por un hilo rectilíneo de gran longitud y resistencia eléctrica <math>R_1</math> circula una corriente variable en el tiempo, tal
 +
que su valor es
 +
 
 +
<center><math>I_1(t) = \begin{cases}I_0t(T-t)/T^2 & 0 < t < T \\ 0 & t<0\ \mathrm{o}\ t>T\end{cases}</math></center>
 +
 
 +
# Halle la carga que pasa por un punto del hilo entre <math>t\to -\infty</math> y <math>t\to\infty</math>.
 +
# Calcule la energía disipada en el cable en el mismo tiempo.
 +
 
 +
=={{nivel|3}} [[Descarga de un condensador]]==
Entre dos placas planas y paralelas, perfectamente conductoras, de sección <math>S</math>, y separadas una distancia <math>a</math> se encuentra un medio resistivo, de permitividad <math>\varepsilon</math> y conductividad <math>\sigma</math>. Entre las placas hay establecida una tensión <math>V_0</math>.
Entre dos placas planas y paralelas, perfectamente conductoras, de sección <math>S</math>, y separadas una distancia <math>a</math> se encuentra un medio resistivo, de permitividad <math>\varepsilon</math> y conductividad <math>\sigma</math>. Entre las placas hay establecida una tensión <math>V_0</math>.
Línea 133: Línea 192:
# Describa el comportamiento del sistema mediante un circuito equivalente.
# Describa el comportamiento del sistema mediante un circuito equivalente.
-
[[Descarga de un condensador|'''Solución''']]
+
=={{nivel|3}} [[Carga de un condensador parcialmente relleno]]==
-
 
+
-
===[[Carga de un condensador parcialmente relleno]]===
+
[[Image:condensadordoscapas.gif|right]]Entre dos placas planas y paralelas separadas una distancia <math>a+b</math> se coloca una capa de espesor <math>a</math> de un medio de permitividad <math>\varepsilon</math> y conductividad <math>\sigma</math>. El resto del espacio lo ocupa una capa de espesor <math>b</math> vacía.
[[Image:condensadordoscapas.gif|right]]Entre dos placas planas y paralelas separadas una distancia <math>a+b</math> se coloca una capa de espesor <math>a</math> de un medio de permitividad <math>\varepsilon</math> y conductividad <math>\sigma</math>. El resto del espacio lo ocupa una capa de espesor <math>b</math> vacía.
Línea 148: Línea 205:
## ¿Cuanto vale la energía aportada por el generador en un periodo? ¿En qué se emplea esta energía?
## ¿Cuanto vale la energía aportada por el generador en un periodo? ¿En qué se emplea esta energía?
-
[[Carga de un condensador parcialmente relleno|'''Solución''']]
+
=={{nivel|3}} [[Descarga de un condensador con un medio polarizado]]==
-
 
+
-
===[[Descarga de un condensador con un medio polarizado]]===
+
[[Imagen:condensadorelectrete.gif|left]]El sistema de la figura está formado por tres placas conductoras ideales, planas y paralelas, todas de área <math>S</math>. Todas las placas pueden suponerse muy delgadas. Entre la placa &ldquo;1&rdquo; y la &ldquo;2&rdquo; hay un dieléctrico ideal de espesor <math>a</math>, caracterizado porque presenta una polarización uniforme y constante <math>\mathbf{P}_0</math>, perpendicular a dichas placas. Entre las placas &ldquo;2&rdquo; y &ldquo;3&rdquo;, separadas una distancia <math>b</math>, hay un medio óhmico de conductividad <math>\sigma</math> y permitividad <math>\varepsilon</math>. Las dos regiones entre las placas están inicialmente descargadas. La placa central se encuentra conectada a un generador, que fija una diferencia de potencial <math>V_0</math> respecto a las otras dos placas, ambas a tierra.
[[Imagen:condensadorelectrete.gif|left]]El sistema de la figura está formado por tres placas conductoras ideales, planas y paralelas, todas de área <math>S</math>. Todas las placas pueden suponerse muy delgadas. Entre la placa &ldquo;1&rdquo; y la &ldquo;2&rdquo; hay un dieléctrico ideal de espesor <math>a</math>, caracterizado porque presenta una polarización uniforme y constante <math>\mathbf{P}_0</math>, perpendicular a dichas placas. Entre las placas &ldquo;2&rdquo; y &ldquo;3&rdquo;, separadas una distancia <math>b</math>, hay un medio óhmico de conductividad <math>\sigma</math> y permitividad <math>\varepsilon</math>. Las dos regiones entre las placas están inicialmente descargadas. La placa central se encuentra conectada a un generador, que fija una diferencia de potencial <math>V_0</math> respecto a las otras dos placas, ambas a tierra.
Línea 160: Línea 215:
Desprecie los efectos de borde.
Desprecie los efectos de borde.
-
[[Descarga de un condensador con un medio polarizado|'''Solución''']]
+
=={{nivel|3}} [[Descarga de un sistema "corte de helado"]]==
-
 
+
-
===[[Descarga de un sistema "corte de helado"]]===
+
[[Image:condensadorcortehelado.gif||right]]Un medio óhmico de permitivida <math>\varepsilon</math>, conductividad <math>\sigma</math> y sección <math>S/2</math> rellena parcialmente el espacio entre dos placas planas y paralelas perfectamente conductoras, ambas de sección <math>S</math> y separadas una distancia <math>a</math>. La otra mitad del espacio entre las placas queda vacío.
[[Image:condensadorcortehelado.gif||right]]Un medio óhmico de permitivida <math>\varepsilon</math>, conductividad <math>\sigma</math> y sección <math>S/2</math> rellena parcialmente el espacio entre dos placas planas y paralelas perfectamente conductoras, ambas de sección <math>S</math> y separadas una distancia <math>a</math>. La otra mitad del espacio entre las placas queda vacío.
-
Inicialmente el sistema se halla en estado estacionario, con una diferencia de potencial $V_0$ entre las placas
+
Inicialmente el sistema se halla en estado estacionario, con una diferencia de potencial <math>V_0</math> entre las placas
# Determine los campos <math>\mathbf{E}</math>, <math>\mathbf{J}</math> y <math>\mathbf{D}</math> en el sistema, así como las densidades (volumétricas y superficiales) de carga libre y de polarización.
# Determine los campos <math>\mathbf{E}</math>, <math>\mathbf{J}</math> y <math>\mathbf{D}</math> en el sistema, así como las densidades (volumétricas y superficiales) de carga libre y de polarización.
Línea 177: Línea 230:
## ¿Cuanto vale la energía aportada por el generador en un periodo? ¿En qué se emplea esta energía?
## ¿Cuanto vale la energía aportada por el generador en un periodo? ¿En qué se emplea esta energía?
-
===[[Condensador sometido a un voltaje en rampa]]===
+
=={{nivel|3}} [[Condensador sometido a un voltaje en rampa]]==
Entre dos placas metálicas, planas y paralelas, de sección <math>S</math>, y separadas una distancia <math>a</math>, se encuentra un medio óhmico de permitividad <math>\varepsilon</math> y conductividad <math>\sigma</math>.
Entre dos placas metálicas, planas y paralelas, de sección <math>S</math>, y separadas una distancia <math>a</math>, se encuentra un medio óhmico de permitividad <math>\varepsilon</math> y conductividad <math>\sigma</math>.
Línea 187: Línea 240:
# Durante este segundo periodo, ¿cuánta energía se disipa en el medio? ¿Cuánta aporta cada generador? ¿Se verifica el balance energético?
# Durante este segundo periodo, ¿cuánta energía se disipa en el medio? ¿Cuánta aporta cada generador? ¿Se verifica el balance energético?
-
===[[Dos esferas alejadas]]===
+
=={{nivel|3}} [[Dos esferas alejadas]]==
[[Image:dosesferashilo.gif|right]]Dos esferas metálicas, perfectamente conductoras, de radio <math>a</math>, se encuentran muy alejadas la una de la otra (de forma que no se influyen entre sí). Las dos esferas se encuentran conectadas mediante un cable de resistencia <math>R</math>. Una de las esferas se encuentra conectada a un generador de tensión <math>V_0</math>, a través de un interruptor que  inicialmente se encuentra abierto. Ambas esferas están inicialmente descargadas.
[[Image:dosesferashilo.gif|right]]Dos esferas metálicas, perfectamente conductoras, de radio <math>a</math>, se encuentran muy alejadas la una de la otra (de forma que no se influyen entre sí). Las dos esferas se encuentran conectadas mediante un cable de resistencia <math>R</math>. Una de las esferas se encuentra conectada a un generador de tensión <math>V_0</math>, a través de un interruptor que  inicialmente se encuentra abierto. Ambas esferas están inicialmente descargadas.
Línea 199: Línea 252:
## ¿Cuanto vale la energía aportada por el generador en un periodo? ¿En qué se emplea esta energía?
## ¿Cuanto vale la energía aportada por el generador en un periodo? ¿En qué se emplea esta energía?
-
===[[Despolarización de una esfera]]===
+
=={{nivel|2}} [[Pulso gaussiano de tensión]]==
-
Una esfera de radio <math>a</math> se despolariza según la ley
+
Se tiene un condensador con pérdidas formado por dos placas cuadradas de lado <math>L = 20\,\mathrm{cm}</math>, situadas paralelamente a una distancia <math>a = 5\,\mathrm{mm}</math>. Entre ellas se encuentra un material de permitividad relativa <math>\varepsilon_r = 2.6</math> y conductividad <math>\sigma = 3.4 \times 10^{−4}\mathrm{S}/\mathrm{m}</math>. Una placa se encuentra permanentemente a tierra, mientras que la otra experimenta un pulso de tensión de forma gaussiana
-
<center><math>\mathbf{P}(\mathrm{r},t)= k\mathrm{e}^{-\lambda t} r\mathbf{u}_{r}</math></center>
+
<center><math>V(t) = V_0\mathrm{e}^{-t^2/T^2}\qquad (-\infty < t < \infty)</math></center>
-
Determine las densidades de carga de polarización, así como la densidad de corriente de polarización. ¿Se verifica la ley de conservación de la carga para <math>\rho_p</math> y <math>\sigma_p</math>?
+
con <math>V_0 = 5\,\mathrm{V}</math> y <math>T = 3\,\mathrm{s}</math>.
-
[[Despolarización de una esfera|'''Solución''']]
+
Para cualquier instante de tiempo, calcule
-
===[[Campos en un condensador sometido a un voltaje alterno]]===
+
# la distribución de campo eléctrico y de corriente entre las placas. Desprecie los efectos de borde.
-
Suponga que se sumergen dos conductores perfectos en un material de permitividad <math>\varepsilon</math> y conductividad <math>\sigma</math>. Si se aplica entre ellos una diferencia de potencial constante <math>V_0</math> la corriente que llega a uno de ellos vale <math>I_0</math>. ¿Cuál será la corriente si el voltaje varía como <math>V_0\cos\omega t</math>?
+
# la carga en cada una de las placas y la corriente que llega a cada una.
 +
# la energía electrostática almacenada, la potencia disipada en el medio, y la potencia desarrollada por el generador.
 +
# Calcule igualmente la energía total disipada a lo largo del tiempo, así como el trabajo total realizado por el generador.
 +
 
 +
Halle el valor numérico de los resultado sélo para el último apartado.
 +
 
 +
'''Dato:'''
 +
 
 +
<center><math>\int_{-\infty}^{\infty}\mathrm{e}^{-x^2}\mathrm{d}x = \sqrt{\pi}</math></center>
 +
 
 +
=={{nivel|2}} [[Despolarización de una esfera]]==
 +
Una esfera de radio <math>a</math> se despolariza según la ley
 +
 
 +
<center><math>\mathbf{P}(\mathrm{r},t)= \frac{k r}{1+(t/a)^2}\mathbf{u}_{r}</math></center>
 +
 
 +
Determine las densidades de carga de polarización, así como la densidad de corriente de polarización. ¿Se verifica la ley de conservación de la carga para <math>\rho_p</math> y <math>\sigma_p</math>?
-
[[Campos en un condensador sometido a un voltaje alterno|'''Solución''']]
+
=={{nivel|1}} [[Campos en un condensador sometido a un voltaje alterno]]==
-
[[Categoría:Problemas de corriente eléctrica]]
+
Suponga que se sumergen dos conductores perfectos en un material de permitividad <math>\varepsilon</math> y conductividad <math>\sigma</math>. Si se aplica entre ellos una diferencia de potencial constante <math>V_0</math> la corriente que llega a uno de ellos vale <math>I_0</math>. ¿Cuál será la corriente si el voltaje varía como <math>V_0\cos(\omega t)</math>?
 +
[[Categoría:Problemas de corriente eléctrica|0]]
[[Categoría:Corriente eléctrica]]
[[Categoría:Corriente eléctrica]]
 +
[[Categoría:Problemas de Campos Electromagnéticos|50]]

última version al 11:55 24 jun 2011

Contenido

1 Flujo de líquido por una tubería

Por el interior de una tubería cilíndrica de radio a fluye un líquido con una velocidad, dependiente de la distancia al eje, ρ, como

\mathbf{v} = v_0\left(1-\frac{\rho^2}{a^2}\right)\mathbf{u}_{z}

El líquido posee una densidad de carga uniforme ρ0, de forma que la densidad de corriente es \mathbf{J} = \rho_0\mathbf{v}. En el exterior del tubo no hay corriente.

  1. Calcule la intensidad de corriente que atraviesa una sección por la tubería.
  2. Si se desea que por la superficie del tubo circule una corriente superficial \mathbf{K}, de forma que la corriente total sea nula, ¿cuánto debe valer \mathbf{K}?

2 Velocidad de arrastre en un hilo

Halle la velocidad de arrastre de los electrones en un cable de plata de 0.5 mm² de sección por el cual circula una corriente de 100 mA.

3 Nube de carga de radio variable

Una nube esférica de carga (compuesta de una distribución de cargas puntuales flotando en el vacío) se contrae y dilata, variando el radio de la esfera como R(t) = R0 + acos(ωt). La carga total de la nube, Q0, se encuentra distribuida en todo momento de forma uniforme en el volumen de la esfera.

A partir de la ley de conservación de la carga, calcule la densidad de corriente de conducción en la nube. Puede suponer que \mathbf{J} = J(r)\mathbf{u}_{r} y que esta densidad no es infinita en el centro de la esfera.

Calcule el campo eléctrico en los puntos del espacio y, a partir de éste, la corriente de desplazamiento. ¿Cuánto vale la densidad de corriente total?

¿Habrá campo magnético en el sistema?

Image:nubevariable.gif

4 Resistencia de un tubo

Sea un tubo cilíndrico, de radio interior a y exterior b, y longitud h, de un material de conductividad σ. Calcule la resistencia eléctrica

  1. Entre las dos bases.
  2. Entre la cara interior y la exterior.
Image:tubo.gif

5 Cable bimetálico

Entre los distintos tipos de cable empleados en la industria, se encuentra el de aluminio revestido de cobre. Está formado por un núcleo de aluminio de radio a (suponga a=2\,\mathrm{mm}), rodeado por una capa de cobre, de radio exterior b (sea b= 3\,\mathrm{mm}).

  1. Calcule la resistencia de cable de esta clase de longitud h=10\,\mathrm{km}.
  2. Determine la corriente que circula por cada metal cuando se aplica una diferencia de potencial V_0=100\,\mathrm{V} al cable anterior.
Image:cableconnucleo.gif

6 Conductividad del suelo

Para determinar la conductividad σ del suelo se mide la corriente entre dos electrodos clavados en tierra y sometidos a una cierta diferencia de potencial.

  1. Suponga en primer lugar sólo un electrodo hemisférico de radio a, perfectamente conductor, puesto a un potencial V1 respecto a puntos muy alejados. En el estado estacionario, determínese la distribución de potencial en el suelo. Admita que el potencial depende exclusivamente de la distancia al centro del electrodo. A partir de este resultado, calcule la resistencia entre el electrodo y el infinito. Suponga que el suelo posee conductividad igual en todos sus puntos.
  2. Suponga ahora dos electrodos del tipo anterior, del mismo radio, y muy alejados entre sí. Si se conectan por el aire mediante un cable ideal y una fuente de continua de tensión V0, ¿qué corriente circula de un electrodo al otro?
  3. Si para una tensión de 100 V entre dos electrodos de 10 cm de radio se mide una corriente de 0.63 A, ¿cuánto vale la conductividad del suelo?
Imagen:pilotes.gif

7 Bombillas puestas en serie

Se colocan en serie dos bombillas de potencias nominales 100 W y 60 W y se conectan a la red. Si la potencia radiada es proporcional a la potencia consumida, ¿cuál de las dos bombillas darán más luz? ¿En qué proporción?

8 Resistor conectado a generador real

El espacio entre dos placas conductoras circulares, planas y paralelas de radio b, separadas una distancia a, se encuentra lleno de un material de permitividad \varepsilon, conductividad σ y permeabilidad μ0. Las placas se encuentran conectadas a un generador real de f.e.m. V0 y resistencia interna r. En el estado estacionario, determine

  1. La densidad de corriente y el campo eléctrico en el espacio entre las placas. Desprecie los efectos de borde.
  2. La potencia total disipada en el volumen entre las placas. ¿Para qué valor de la conductividad es máxima esta potencia disipada?
  3. La energía eléctrica almacenada en el material.
  4. Sabiendo que el campo magnético entre las placas es acimutal y dependiente sólo de la distancia al eje, calcule el valor de este campo magnético.

9 Resistor con dos capas

Se tiene un dispositivo formado por dos placas metálicas perfectamente conductoras, de sección cuadrada de lado L=10\,\mathrm{cm} situadas paralelamente a 4\,mm de distancia

Entre las placas se encuentran dos capas de dieléctricos no ideales de espesor a_1=3\,\mathrm{mm} y a_2=1\,\mathrm{mm}, respectivamente, de permitividades \varepsilon_1 = 10\,\mathrm{pF}/\mathrm{m} y \varepsilon_2=30\,\mathrm{pF}/\mathrm{m} y conductividades \sigma_1=6\,\mathrm{mS}/\mathrm{m} y \sigma_2=2\,\mathrm{mS}/\mathrm{m}. Se aplica un voltaje constante entre las placas V_0 = 12\,\mathrm{V}.

  1. Determine el valor de la densidad de corriente, el campo eléctrico y el vector desplazamiento en todos los puntos entre las placas.
  2. Halle la intensidad de corriente que atraviesa el dispositivo.
  3. Calcule las densidades de carga libre en todos los medios y superficies del sistema, así como la carga libre total acumulada en cada uno de los medios y superficies.
  4. Halle la potencia disipada y la energía almacenada en el sistema.
Archivo:resistor-dos-capas.png

10 Corrientes atmosféricas

La resistividad del aire en la atmósfera decrece exponencialmente con la altura como

\sigma^{-1}=r=r_1 \mathrm{e}^{-\alpha_1 z}+
r_2 \mathrm{e}^{-\alpha_2 z}+r_3 \mathrm{e}^{-\alpha_3 z}\,

donde

\begin{array}{|c|c|c|}
\hline i & r_i\ (10^{12}\,\Omega{\cdot}{\rm m}) & \alpha_i ({\rm km}^{-1})
\\ \hline \hline
1 & 46.9 &  4.527\\ \hline 2 & 22.2 &  0.375 \\ \hline 3 & 5.9  &
0.121 \\\hline
\end{array}

El campo eléctrico en zonas despejadas de la superficie de la Tierra vale E_0=-100\,\mathrm{V}/\mathrm{m}. Este campo es prácticamente constante y va siempre en la dirección vertical.

A partir de estos datos halle

  1. El valor del campo eléctrico para un punto situado entre la superficie de la Tierra y la ionosfera (z = 100\,\mathrm{km}).
  2. La diferencia de potencial entre la superficie y la ionosfera.
  3. La distribución de cargas en la atmósfera.
  4. La corriente total que llega a la superficie de la Tierra.
  5. La potencia necesaria para mantener esta corriente estacionaria
  6. Estime el tiempo que tardaría la atmósfera en descargarse si no existiera un mecanismo generador

11 Resistencia de una soldadura

Tras una rotura de un cable de cobre (de resistividad r1) de sección S y gran longitud, se procede a unir los dos pedazos mediante una soldadura. Como consecuencia de la presencia de óxido la resistividad

del cable aumenta hasta un valor r2 en una región alrededor del punto de contacto, pudiéndose describir matemáticamente según la ley

r(x) = r_1 + \frac{r_2-r_1}{1+(x/a)^2}


  1. Calcule el aumento de la resistencia total del cable. Aplíquese al caso S=1\,\mathrm{mm}^2, r_1= 1.7\times 10^{-8}\,\Omega{\cdot}\mathrm{m}, r_2=1.1\times 10^{-6}\,\Omega{\cdot}\mathrm{m}, a=2\,\mathrm{mm}.
  2. Si la potencia máxima por unidad de volumen que soporta el hilo antes de fundirse es p=700\,\mathrm{W}/\mathrm{m}^3, determine la intensidad de corriente máxima que puede circular por el cable antes de la soldadura y después de ella.

12 Fusible de plomo

Para construir un fusible se intercala un hilo de plomo (\sigma = 
4.84\times 10^5\,\mathrm{S}/\mathrm{m}) en el camino de un hilo de cobre de 0.5mm de radio. La pieza de plomo está formado por un hilo de 0.1mm de radio y 1cm de longitud, unido al cobre por dos troncos de cono, también de plomo, de 0.5cm de longitud.

  1. La condición de fusión la da el que en un intervalo de tiempo de 1s, en la pieza de plomo se disipe una energía de 700mJ/mm³. Calcule la intensidad máxima que puede circular por el hilo de cobre para que no se alcance este límite.
  2. Calcule la resistencia de la pieza de plomo, admitiendo que el sistema se comporta como un conductor filiforme de sección variable.
Imagen:hilofusible.gif

13 Matriz de conductancia de bloques

Se tiene un sistema de cuatro electrodos tal como se indica en la figura. Uno de ellos (electrodo "0") es un prisma cuadrado hueco de lado interior 43 mm y longitud 50 mm. Este electrodo se encuentra siempre a tierra.

En su interior se encuentran tres conductores perfectos. El electrodo "1" es un paralelepípedo de lados 41 mm, 20 mm y 50 mm. Los electrodos "2" y "3" son sendos prismas cuadrados de lado 20 mm y altura 50 mm. la distancia entre superficies conductoras vecinas es de 1 mm.

Todo el espacio entre los distintos electrodos (pero no el exterior al conductor 0) se encuentra lleno de un material óhmico de conductividad \sigma=10^{-4}\,\mathrm{S}/\mathrm{m}

  1. Teniendo en cuenta la pequeñez relativa de las diferentes distancias calcule, aproximadamente, la matriz de coeficientes de conductancia en este sistema.
  2. Halle las corrientes que llegan a los conductores 1, 2 y 3, cuando se encuentran conectados a generadores que fijan sus tensiones en V_1=10\,\mathrm{V}, V_2=20\,\mathrm{V} y V_3=-10\,\mathrm{V}.
  3. Para la configuración anterior, calcule la potencia disipada en el sistema.
  4. Si el electrodo 2 se encuentra a tensión V_0=100\,\mathrm{V}, el 1 se deja desconectado y el 3 se pone a tierra, ¿cuáles son las corrientes que llegan a cada conductor y las tensiones de cada uno? ¿Y si también se desconecta el 3?

14 Intersección de dos pistas

Una intersección de dos pistas en un circuito integrado se puede modelar como una cruz con brazos de igual longitud a la cual están conectados tres electrodos “vivos” (“1” a “3”) y uno de tierra (“0”), según se indica en la figura. Se sabe que cuando el electrodo 1 se encuentra a una tensión de +12 V y el resto a tierra, por el electrodo 1 entra una corriente de +7.04 mA, mientras que por el conductor 2 entra (según el criterio usual de signos) una de −2.63 mA.
  1. Determine la corriente que entra (siguiendo el mismo criterio) por el electrodo 3 en la situación anterior.
  2. Halle la matriz de coeficientes de conductancia del sistema de tres electrodos vivos.
  3. Construya un circuito equivalente para el sistema de electrodos, que no emplee nodos intermedios. Halle los valores de las resistencias de este circuito.
  4. Si el electrodo 1 se deja a +12 V y el 3 a tierra, pero el 2 se pone a −5 V. ¿Cuánta corriente entrará por cada electrodo vivo?
  5. Para el caso original y para el del apartado anterior, ¿cuánta potencia se disipa en el sistema?

15 Pista en forma de H

Se tiene un circuito impreso en forma de "H" de un material de conductividad σ, con cuatro terminales, una de las cuales se encuentra permanentemente a tierra. Los brazos de la H y el tabique central poseen longitud b. Los cuatro brazos tienen anchura a, (a\ll b) mientras que el tramo central posee anchura 2a, según indica la figura. El espesor de toda la pista es c.

  1. Determine la matriz de los coeficientes de conductancia, Gij, correspondiente a los tres terminales libres. Desprecie la pequeña contribución de las esquinas donde confluyen los brazos.
  2. A partir de la matriz anterior, calcule las conductancias \overline{G}_{ij} y elabore un circuito equivalente al sistema de tres electrodos, que no emplee nodos intermedios.
  3. Determine la potencia consumida en la pista cuando el terminal 1 se encuentra a potencial V0 y los otros a tierra.
  4. En la configuración anterior se corta la conexión a tierra del electrodo 2. En el nuevo estado estacionario, ¿se consume más o menos potencia que antes de la desconexión? ¿Cuánto?
Image:dimensiones-pista-H.png

16 Pista con varias terminales

Se tiene un modelo de circuito integrado formado por una pista con las dimensiones indicadas en la figura. La pista es de grafito (\sigma=7.3\times 10^{5}\,\mathrm{S}/\mathrm{m}). El espesor de la pista vale d=1\,\mathrm{mm} en todas partes. La anchura de cada segmento rectilíneo es a=4\,\mathrm{mm}, salvo el central, que tiene una anchura de 2\,\mathrm{mm}. Todas las fuentes y conexiones exteriores son ideales (sin resistencia).
  1. Inicialmente el interruptor A está abierto. Calcule el valor aproximado de la corriente que entra por el electrodo 1, cuando el electrodo 1 está a una tensión de 0.5 V y el electrodo 0 está a tierra.
  2. ¿Cuánto vale aproximadamente la potencia disipada en el sistema en la situación anterior?
  3. Suponga que se cierra el interruptor A. ¿Cómo cambia la corriente que entra por el electrodo 1? ¿Y la potencia consumida?
  4. En la situación del apartado anterior, ¿cuánto vale aproximadamente la densidad de corriente en cada tramo recto del circuito? ¿Y la potencia disipada por unidad de volumen?

17 Modelo esférico de generador

Como modelo ideal de generador suponga el siguiente sistema: una esfera de radio a de conductividad σ1 se encuentra inmersa en un medio de conductividad σ2 que se extiende hasta el infinito. En el interior de la esfera actúa una fuerza no electrostática por unidad de carga \mathbf{E}' = E'_0\mathbf{u}_{z}, constante y uniforme.

  1. Escriba las ecuaciones y condiciones de salto para la densidad de corriente, el campo y el potencial eléctrico en todo el espacio.
  2. Sabiendo que en el interior de la esfera el potencial es de la forma
\phi_1 = A r\cos\theta \qquad (r<a)
y en el exterior de ella
\phi_1 = \frac{B}{r^2}\cos\theta \qquad (r>a)
calcule las constantes A y B.
  1. Halle la potencia desarrollada por el campo eléctrico en el interior y el exterior de la esfera.
  2. Considerando que la corriente es la que atraviesa el plano ecuatorial de la esfera (z = 0, r < a) determine la fuerza electromotriz, la resistencia interna y la externa del circuito equivalente.
  3. ¿A qué tienden los resultados cuando \sigma_1 \ll \sigma_2? ¿Y cuando \sigma_1\gg \sigma_2?

18 Pulso de corriente

Por un hilo rectilíneo de gran longitud y resistencia eléctrica R1 circula una corriente variable en el tiempo, tal que su valor es

I_1(t) = \begin{cases}I_0t(T-t)/T^2 & 0 < t < T \\ 0 & t<0\ \mathrm{o}\ t>T\end{cases}
  1. Halle la carga que pasa por un punto del hilo entre t\to -\infty y t\to\infty.
  2. Calcule la energía disipada en el cable en el mismo tiempo.

19 Descarga de un condensador

Entre dos placas planas y paralelas, perfectamente conductoras, de sección S, y separadas una distancia a se encuentra un medio resistivo, de permitividad \varepsilon y conductividad σ. Entre las placas hay establecida una tensión V0.

  1. Halle la corriente que circula entre las placas y la carga almacenada en cada una, así como la energía almacenada en el sistema.
  2. En t = 0 se desconecta el generador. Determine la evolución de la carga en las placas a partir de ese momento.
  3. Halle la energía disipada en el medio durante el proceso de descarga del condensador.
  4. Describa el comportamiento del sistema mediante un circuito equivalente.

20 Carga de un condensador parcialmente relleno

Entre dos placas planas y paralelas separadas una distancia a + b se coloca una capa de espesor a de un medio de permitividad \varepsilon y conductividad σ. El resto del espacio lo ocupa una capa de espesor b vacía.

En el instante t = 0 se conecta una diferencia de potencial V0.

  1. ¿Cuánto valen \mathbf{E}, \mathbf{D} y \mathbf{J} inmediatamente después de conectar el potencial?
  2. ¿Cuánto valen un tiempo largo después de que se haya establecido?
  3. ¿Cuánto valen en cualquier instante?
  4. ¿Cómo varía, durante el periodo transitorio, la energía almacenada en el sistema? ¿Cuánta energía se disipa durante este periodo? ¿De dónde procede esta energía?
  5. Si en lugar de una tensión escalón se aplica durante un largo periodo de tiempo un voltaje alterno V = V0cos(ωt)
    1. ¿Cuánto vale la corriente que llega al elemento? ¿Cuál es la impedancia del sistema? ¿Y el circuito equivalente?
    2. ¿Cuanto vale la energía aportada por el generador en un periodo? ¿En qué se emplea esta energía?

21 Descarga de un condensador con un medio polarizado

El sistema de la figura está formado por tres placas conductoras ideales, planas y paralelas, todas de área S. Todas las placas pueden suponerse muy delgadas. Entre la placa “1” y la “2” hay un dieléctrico ideal de espesor a, caracterizado porque presenta una polarización uniforme y constante \mathbf{P}_0, perpendicular a dichas placas. Entre las placas “2” y “3”, separadas una distancia b, hay un medio óhmico de conductividad σ y permitividad \varepsilon. Las dos regiones entre las placas están inicialmente descargadas. La placa central se encuentra conectada a un generador, que fija una diferencia de potencial V0 respecto a las otras dos placas, ambas a tierra.
  1. Determine los campos y corrientes en el sistema cuando éste se halla en régimen estacionario.
  2. Calcule las distribuciones estacionarias de carga libre en el sistema. Ajuste el valor de V0 para que la placa central esté descargada. Este valor se usará en los dos apartados siguientes.
  3. En un instante t = 0 se desconecta el generador. Halle la distribución de campos, corrientes y cargas libres en el sistema cuando se alcanza de nuevo una situación estacionaria.
  4. Calcule la evolución en el tiempo de los campos, las corrientes y la carga libre en las placas.

Desprecie los efectos de borde.

22 Descarga de un sistema "corte de helado"

Un medio óhmico de permitivida \varepsilon, conductividad σ y sección S / 2 rellena parcialmente el espacio entre dos placas planas y paralelas perfectamente conductoras, ambas de sección S y separadas una distancia a. La otra mitad del espacio entre las placas queda vacío.

Inicialmente el sistema se halla en estado estacionario, con una diferencia de potencial V0 entre las placas

  1. Determine los campos \mathbf{E}, \mathbf{J} y \mathbf{D} en el sistema, así como las densidades (volumétricas y superficiales) de carga libre y de polarización.
  2. Calcule la energía eléctrica almacenada y la potencia que se disipa en el sistema en este estado estacionario.
  3. En t = 0 se desconecta el generador, quedando el circuito abierto
    1. Determine los campos \mathbf{E}, \mathbf{J} y \mathbf{D} y las distribuciones de carga en el sistema cuando, pasado un tiempo largo, se alcanza de nuevo un estado estacionario.
    2. Determine la evolución temporal de estos campos y cargas para todo t > 0.
    3. ¿Cuánta energía se disipa en el proceso?
  4. Si en lugar de una tensión escalón se aplica durante un largo periodo de tiempo un voltaje alterno V = V0cos(ωt)
    1. ¿Cuánto vale la corriente que llega al elemento? ¿Cuál es la impedancia del sistema? ¿Y el circuito equivalente?
    2. ¿Cuanto vale la energía aportada por el generador en un periodo? ¿En qué se emplea esta energía?

23 Condensador sometido a un voltaje en rampa

Entre dos placas metálicas, planas y paralelas, de sección S, y separadas una distancia a, se encuentra un medio óhmico de permitividad \varepsilon y conductividad σ.

Ambas placas están conectadas a sendos generadores de tensión variable.

  1. Inicialmente ambas placas se encuentran a tierra. Entonces, la tensión de la placa 1 se varía gradualmente de 0 a V0 en un tiempo T como V1(t) = V0t / T. Determine la corriente que llega a esta placa durante este tiempo.
  2. Para el periodo anterior, calcule la energía disipada en el medio óhmico, así como la energía aportada por el generador en este intervalo. ¿Coinciden estas dos cantidades? Si no lo hacen, ¿a qué se debe su diferencia?
  3. Una vez que la placa 1 se encuentra a tensión V0, el potencial de la placa 2 comienza a elevarse hasta el mismo valor, requiriendo de nuevo un periodo T para alcanzar el valor límite. ¿Cuánta corriente llega a la placa 1 durante este intervalo? ¿Y a la placa 2?
  4. Durante este segundo periodo, ¿cuánta energía se disipa en el medio? ¿Cuánta aporta cada generador? ¿Se verifica el balance energético?

24 Dos esferas alejadas

Dos esferas metálicas, perfectamente conductoras, de radio a, se encuentran muy alejadas la una de la otra (de forma que no se influyen entre sí). Las dos esferas se encuentran conectadas mediante un cable de resistencia R. Una de las esferas se encuentra conectada a un generador de tensión V0, a través de un interruptor que inicialmente se encuentra abierto. Ambas esferas están inicialmente descargadas.
  1. Suponga que el interruptor se cierra durante un periodo de tiempo muy corto (el imprescindible para que se cargue la esfera conectada a él) y se vuelve a abrir. Justo tras este intervalo ¿cómo es la distribución de cargas y potenciales en las esferas? ¿Cuánto vale la energía electrostática almacenada en el sistema?
  2. Si se deja transcurrir un periodo de tiempo largo, ¿cómo queda la distribución de cargas y potenciales? ¿Cuál es la energía electrostática almacenada en el sistema en el estado final?
  3. Determine la evolución en el tiempo de las cargas y potenciales en cada esfera, así como la corriente que circula por el cable.
  4. Halle la energía disipada en el cable durante el periodo transitorio y verifique que se satisface el balance energético.
  5. Suponga ahora que, en el proceso anterior, el generador no se desconecta, sino que se deja permanentemente conectado a la primera esfera. En ese caso, ¿cómo varía la carga en cada esfera? ¿Y la corriente por el cable? ¿Y la energía disipada y la energía almacenada?
  6. Si en lugar de una tensión escalón se aplica a la esfera durante un largo periodo de tiempo un voltaje alterno V = V0cos(ωt)
    1. ¿Cuánto vale la corriente que llega a esta esfera? ¿Cuál es la impedancia del sistema? ¿Y el circuito equivalente?
    2. ¿Cuanto vale la energía aportada por el generador en un periodo? ¿En qué se emplea esta energía?

25 Pulso gaussiano de tensión

Se tiene un condensador con pérdidas formado por dos placas cuadradas de lado L = 20\,\mathrm{cm}, situadas paralelamente a una distancia a = 5\,\mathrm{mm}. Entre ellas se encuentra un material de permitividad relativa \varepsilon_r = 2.6 y conductividad \sigma = 3.4 \times 10^{−4}\mathrm{S}/\mathrm{m}. Una placa se encuentra permanentemente a tierra, mientras que la otra experimenta un pulso de tensión de forma gaussiana

V(t) = V_0\mathrm{e}^{-t^2/T^2}\qquad (-\infty < t < \infty)

con V_0 = 5\,\mathrm{V} y T = 3\,\mathrm{s}.

Para cualquier instante de tiempo, calcule

  1. la distribución de campo eléctrico y de corriente entre las placas. Desprecie los efectos de borde.
  2. la carga en cada una de las placas y la corriente que llega a cada una.
  3. la energía electrostática almacenada, la potencia disipada en el medio, y la potencia desarrollada por el generador.
  4. Calcule igualmente la energía total disipada a lo largo del tiempo, así como el trabajo total realizado por el generador.

Halle el valor numérico de los resultado sélo para el último apartado.

Dato:

\int_{-\infty}^{\infty}\mathrm{e}^{-x^2}\mathrm{d}x = \sqrt{\pi}

26 Despolarización de una esfera

Una esfera de radio a se despolariza según la ley

\mathbf{P}(\mathrm{r},t)= \frac{k r}{1+(t/a)^2}\mathbf{u}_{r}

Determine las densidades de carga de polarización, así como la densidad de corriente de polarización. ¿Se verifica la ley de conservación de la carga para ρp y σp?

27 Campos en un condensador sometido a un voltaje alterno

Suponga que se sumergen dos conductores perfectos en un material de permitividad \varepsilon y conductividad σ. Si se aplica entre ellos una diferencia de potencial constante V0 la corriente que llega a uno de ellos vale I0. ¿Cuál será la corriente si el voltaje varía como V0cos(ωt)?

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 11:55, 24 jun 2011. - Esta página ha sido visitada 53.914 veces. - Aviso legal - Acerca de Laplace