Entrar Página Discusión Historial Go to the site toolbox

Problemas de Cinemática del punto (G.I.A.)

De Laplace

Contenido

1 Ecuaciones de curvas

Expresa en forma parámetrica e implícita las siguientes curvas

  1. El eje OY
  2. Una circunferencia de radio a, contenida en el plano XY y con centro en el origen.
  3. Una parábola contenida en el plano YZ y con ecuación z = y2.

2 Trayectoria de una partícula

La trayectoria de una partícula viene dada por la ley horaria


    \vec{r}(t) = \dfrac{A(T^2-t^2)}{T^2+t^2}\,\vec{\imath} + \dfrac{2ATt}{T^2+t^2}\,\vec{\jmath}

Determina la velocidad y aceleración de la partícula, los vectores del triedro intrínseco, así como la ecuación de la trayectoria. Calcula también las componentes intrínsecas de la velocidad y la aceleración ¿Cual es la expresión de un desplazamiento elemental \mathrm{d}\vec{r}? ¿Cuánto tiempo emplea en llegar al punto medio de la trayectoria?. ¿Y al punto final? Describe cualitativamente la evolución temporal de la posición de la partícula.

3 Tiro oblicuo

Determina el movimiento de un proyectil disparado con una velocidad inicial v0 y un ángulo α con la horizontal. El proyectil está sometido a la acción de la gravedad. Calcula el radio de curvatura en el punto más alto de su trayectoria.

4 Cuerda enrollándose

Una partícula se mueve en el plano OXY mientras permanece conectada a uno de los extremos de un hilo inextensible de longitud \ l=\pi R\ . El otro extremo está unido a un punto fijo A de una circunferencia de radio R y centro O, cuyas coordenadas en el sistema cartesiano OXY son \overrightarrow{OA}= R \vec{\imath}. Partiendo de la posición inicial \left.\overrightarrow{OP}\right|_{t=0} = R
\left( \vec{\imath} + \pi \vec{\jmath} 
\right), el movimiento de la partícula con velocidad de módulo constante v0 da lugar a que el hilo, que permanece siempre tenso, se enrolle en dicha circunferencia. Utilizando como parámetro el ángulo θ correspondiente al punto C donde desaparece el contacto hilo--circunferencia, calcula:

  1. Las ecuaciones paramétricas de la trayectoria seguida por la partícula.
  2. La ley horaria del movimiento θ = θ(t) y tiempo que tarda el hilo en enrollarse completamente sobre la circunferencia.
  3. La aceleración de la partícula.
  4. El triedro intrínseco de la trayectoria seguida por la partícula

5 Barra girando en un plano

Una barra rígida AB de longitud \ a\ se mueve en un plano vertical OXY, manteniendo su extremo A articulado en un punto del eje horizontal de coordenadas \overrightarrow{OA}= a \vec{\imath}, y verificando la ley horaria θ(t) = 2ωt, con 0 \leq
\theta \leq \pi y siendo ω = cte. Un hilo inextensible de longitud 2a tiene uno de sus extremos conectado al origen del sistema de referencia (punto O), mientras que del otro cuelga una partícula P que mantiene al hilo siempre tenso. El hilo se apoya sobre una pequeña polea de radio despreciable situada en el extremo B de la barra, de forma que el tramo \overline{BP} permanece siempre paralelo al eje OY (ver figura). Se pide:

  1. Ecuaciones horarias del punto P: \ \overrightarrow{OP} = \mathbf{r} (t) =x(t) \vec{\imath} + y(t) \vec{\jmath}.
  2. Instante del tiempo tM en que la partícula alcanza su altura máxima.
  3. Radio de curvatura de la trayectoria seguida por P, en el instante considerado en el apartado anterior.

6 Velocidad de un punto en la superficie de la Tierra

La Tierra rota uniformemente con respecto a su eje con velocidad angular ω constante. Encuentra en función de la latitud λ, la velocidad y la aceleración de un punto sobre la superficie terrestre, debidas a dicha rotación (radio de la Tierra: R = 6.37 \times 10^6 m.)


7 Punto moviéndose sobre una parábola

Un punto inicialmente en reposo en la posición x = a, y = b, describe la parábola \ \Gamma: y^2 = (b^2/a) x. Se conoce la componente y de la aceleración: ay = − k2y, con k = cte. Determina en función del tiempo la posición, velocidad y aceleración. ¿Cuál es la siguiente posición de reposo, y cuánto tiempo tarda en alcanzarla?

8 Barra deslizando sobre una circunferencia

En un plano OXY, se define el sistema cinemático formado por los dos siguientes elementos geométricos:

  1. una circunferencia fija, de radio R y centrada en el punto C de coordenadas (x_C=R,\, y_C=0);
  2. un segmento rectilíneo móvil A'A, de longitud superior a 4R, el cual gira con velocidad angular constante ω (en sentido antihorario) alrededor de un eje fijo que pasa por su punto medio O y es normal al plano OXY (eje OZ).

Sabiendo que el ángulo θ ( que forman OA y OX) es nulo en el instante inicial (t = 0); y considerando como móvil problema el punto P en el que se cortan el segmento A'A y la circunferencia , se pide:

  1. item Determinar las ecuaciones horarias, \mathbf{r}(t) = \overrightarrow{OP}(t) = x(t)\vec{\imath}+y(t)\vec{\jmath}, del punto P, así como sus vectores velocidad, \mathbf{v}(t), y aceleración, \mathbf{a}(t).
  2. Calcular las aceleraciones tangencial y normal de dicho punto P.

9 Parámetro arco de una hélice

Sea la hélice Γ descrita en un sistema de referencia cartesiano OXYZ por las siguientes ecuaciones paramétricas:


\Gamma\,:\,\mathbf{r} = \mathbf{r}(\lambda)
\left\{
  \begin{array}{l}
    x(\lambda) = a \cos\lambda\\
    y(\lambda) = a \,\mathrm{sen}\,\lambda\\
    z(\lambda) = h \lambda
  \end{array}
\right.

donde a y h son constantes conocidas.

  1. Determina la longitud recorrida sobre la hélice (parámetro arco) en función del parámetro λ
  2. Obtén los vectores del triedro intrínseco en cada punto de dicha curva.
  3. Calcula su radio de curvatura.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace