Problemas de cinemática del sólido rígido (GIE)
De Laplace
m (→Diferentes movimientos de una esfera) |
(→Ejemplo gráfico de movimiento plano) |
||
Línea 152: | Línea 152: | ||
# En dicho instante, ¿cuál es la velocidad del origen de coordenadas O? | # En dicho instante, ¿cuál es la velocidad del origen de coordenadas O? | ||
# ¿Dónde se encuentra el centro instantáneo de rotación? | # ¿Dónde se encuentra el centro instantáneo de rotación? | ||
+ | |||
+ | ==[[Comparación de posibles movimientos planos]]== | ||
+ | De las siguientes cuatro figuras, solo una representa velocidades | ||
+ | posibles de los extremos A y B de una barra rígida que realiza un movimiento | ||
+ | plano. | ||
+ | |||
+ | # ¿Cuál es la figura correcta? | ||
+ | # Para la barra anterior, ¿dónde se encuentra su centro instantáneo de rotación, según la cuadrícula de la figura? | ||
+ | # ¿Cuánto vale, en rad/s, la velocidad angular instantánea de este movimiento, si la cuadrícula representa m en distancias y m/s en velocidades? | ||
==[[Deslizamiento entre dos rodillos]]== | ==[[Deslizamiento entre dos rodillos]]== |
Revisión de 22:01 4 feb 2013
1 Caso de campo de velocidades de un sólido
El campo de velocidades instantáneo de un sólido rígido tiene la expresión, en el sistema internacional

- Determine la velocidad angular,
, y la velocidad del origen de coordenadas,
.
- Halle la velocidad del punto
.
- ¿Qué tipo de movimiento describe el sólido en este instante?
- Halle la ecuación del eje instantáneo de rotación y mínimo deslizamiento (o eje instantáneo de rotación, en su caso).
2 Movimiento de un sólido conocido un eje
Un sólido rígido se encuentra en rotación instantánea alrededor de un eje que pasa por el punto A(1,0, − 1) y lleva la dirección del vector , de tal forma que la velocidad del punto B(0,2,1) es
- Halle el valor de la constante c.
- Calcule la velocidad angular instantánea.
- Calcule la velocidad del punto P(1,1,0).
Todas las cantidades están expresadas en las unidades del SI.
3 Clasificación de movimientos de un sólido
Se tiene un sólido formado por ocho masas iguales, , situadas en los vértices de un cubo de lado
. En un instante dado, una de ellas se encuentra en el origen de coordenadas y las aristas son paralelas a los ejes de coordenadas.

Considere los casos siguientes para las velocidades de las masas situadas en ,
y
Caso | ![]() | ![]() | ![]() |
---|---|---|---|
I | ![]() | ![]() | ![]() |
II | ![]() | ![]() | ![]() |
III | ![]() | ![]() | ![]() |
IV | ![]() | ![]() | ![]() |
V | ![]() | ![]() | ![]() |
VI | ![]() | ![]() | ![]() |
- Identifique cuáles de las situaciones anteriores son compatibles con la condición de rigidez.
- Para las que sí lo son, identifique si se trata de un movimiento de traslación pura, rotación pura o helicoidal.
- Para las rotaciones y movimientos helicoidales, determine la posición del EIR o EIRMD.
- Para los movimientos compatibles, calcule la cantidad de movimiento, el momento cinético y la energía cinética del sistema de masas.
4 Rapidez de los puntos de un tornillo
Un tornillo de radio 2 mm y paso de rosca 1 mm avanza impulsado por un destornillador de forma que su punta se mueve a 2 mm/s. Determine la rapidez de los puntos del filete del tornillo.

5 Rodadura y deslizamiento de un disco
Un disco de radio R y masa M rueda y desliza sobre el plano horizontal y = 0 de forma que la velocidad del punto de contacto con el suelo, A, y del diametralmente opuesto, B son de la forma

- Calcule la velocidad angular del disco.
- Halle la velocidad del centro del disco, C, así como de los puntos D y E situados en los extremos de un diámetro horizontal.
- Determine la posición del centro instantáneo de rotación.
- Indique a qué se reducen los resultados anteriores en los casos particulares siguientes:
- vA = − vB
- vA = 0
- vA = vB
6 Rodadura y pivotamiento de una pelota
Una pelota de radio R rueda y pivota sin deslizar sobre el plano horizontal z = 0, de forma que las velocidades de los puntos y
valen respectivamente
y
.
- Determine la velocidad angular de rodadura y la de pivotamiento.
- Halle la velocidad del centro de la bola.
- Determine la ecuación del eje instantáneo de rotación.
7 Diferentes movimientos de una esfera
Considérese una esfera de masa M y radio R que se mueve sobre la superficie horizontal z = 0. Consideramos un instante en el que la esfera toca el suelo justo en el origen de coordenadas, O, y tal que en ese momento la velocidad de dicho punto de contacto con el suelo es nula

Para este mismo instante la velocidad de los puntos y
situados en un diámetro horizontal valen respectivamente

Para los tres casos siguientes:
- vA = + vB
- vA = 0
- vA = − vB
- Indique justificadamente el tipo de movimiento instantáneo que realiza la esfera (traslación, rotación, helicoidal,…)
- Calcule la velocidad angular del sólido.
- Halle la velocidad angular de pivotamiento y la de rodadura de la esfera.
- Dé la ecuación del eje instantáneo de rotación y mínimo deslizamiento (o de rotación, en su caso).
- Calcule la velocidad lineal del centro C de la esfera y la del punto D situado en el extremo superior de la esfera.
8 Deslizamiento de una barra
Una barra metálica de 1.00 m de longitud resbala apoyada en el suelo y en una pared vertical. En un momento dado su extremo inferior se encuentra a una distancia de 60 cm de la esquina y se mueve con velocidad de 12 cm/s alejándose de la esquina
- ¿Con qué velocidad se mueve el extremo superior de la barra?
- Considerando un sistema de ejes centrado en la esquina, con el suelo como eje OX y la pared como eje OZ, ¿dónde se encuentra el C.I.R. de la barra en el instante anteriormente descrito?
9 Movimiento de un sistema biela-manivela
Un sistema biela-manivela está formado por: una barra fija (el eje “1”); una barra (la manivela “0”) de longitud L, articulada en el punto O del eje y que forma un ángulo θ(t) con él; y una segunda barra (la biela “2”), también de longitud L, articulada en el punto A de la manivela y cuyo segundo extremo B está obligado a deslizar por el eje.
- Halle las velocidades de los puntos A y B de la biela.
- Determine la velocidad angular de la biela respecto al eje.
- Localice el centro instantáneo de rotación (CIR) de la biela respecto al eje.
- Suponga el caso
y que en un instante dado tg(θ) = 0.75 siendo
. Calcule la velocidades respecto al eje de los puntos A y B de la biela, su velocidad angular y las coordenadas del CIR.

10 Barra articulada rotatoria
Se tiene un sistema articulado formado por dos barras de la misma masa y la misma longitud h situadas sobre una superficie horizontal. La primera barra tiene un extremo O fijo, de forma que gira alrededor de él con velocidad angular constante Ω respecto a un sistema de ejes fijos OXY. La segunda barra está articulada en el extremo A de la primera y gira respecto de los mismos ejes fijos con una velocidad angular 2Ω. En el instante t = 0 el sistema está completamente extendido a lo largo del eje OX.
- Calcule la velocidad del punto de articulación A y del extremo libre B de la segunda barra en el instante t = 0.
- Localice la posición del centro instantáneo de rotación I del movimiento de la segunda barra respecto a los ejes fijos para el instante t = 0.
- Determine la posición del extremo B cuando ha pasado medio periodo, t = π / Ω, así como la velocidad de este punto en ese instante.
- Escriba las ecuaciones horarias de la posición del punto B para todo instante.
- Calcule la aceleración del extremo B de la barra en el instante t = 0. ¿Es nula alguna de sus componentes intrínsecas?

11 Ejemplo gráfico de movimiento plano
En un movimiento plano, se tiene que la velocidad instantánea de dos puntos A y B es la ilustrada en la figura (para la posición, la cuadrícula representa cm y para la velocidad cm/s)

- En dicho instante, ¿cuál es la velocidad del origen de coordenadas O?
- ¿Dónde se encuentra el centro instantáneo de rotación?
12 Comparación de posibles movimientos planos
De las siguientes cuatro figuras, solo una representa velocidades posibles de los extremos A y B de una barra rígida que realiza un movimiento plano.
- ¿Cuál es la figura correcta?
- Para la barra anterior, ¿dónde se encuentra su centro instantáneo de rotación, según la cuadrícula de la figura?
- ¿Cuánto vale, en rad/s, la velocidad angular instantánea de este movimiento, si la cuadrícula representa m en distancias y m/s en velocidades?
13 Deslizamiento entre dos rodillos
Un rodillo de radio (sólido “0”) rueda sin deslizar sobre un suelo horizontal “1” de forma que su centro C avanza con una celeridad constante
respecto al suelo. En su
marcha, este rodillo empuja a un segundo rodillo de radio
(sólido “2”), que se ve obligado a rodar sin deslizar sobre el mismo suelo, manteniéndose tangente al primer rodillo (ver figura).
Halle la velocidad relativa de deslizamiento en el punto A de contacto entre los dos sólidos. ¿Cuál es la rapidez de este deslizamiento?

14 Clasificación de movimientos de un sólido (versión 2011)
Se tiene un sólido formado por ocho masas iguales, , situadas en los vértices de un cubo de lado
. En un instante dado, una de ellas se encuentra en el origen de coordenadas y las aristas son paralelas a los ejes de coordenadas.

Considere los casos siguientes para las velocidades de las masas situadas en ,
y
Caso | ![]() | ![]() | ![]() |
---|---|---|---|
I | ![]() | ![]() | ![]() |
II | ![]() | ![]() | ![]() |
III | ![]() | ![]() | ![]() |
IV | ![]() | ![]() | ![]() |
V | ![]() | ![]() | ![]() |
VI | ![]() | ![]() | ![]() |
- Identifique cuáles de las situaciones anteriores son compatibles con la condición de rigidez.
- Para las que sí lo son, identifique si se trata de un movimiento de traslación pura, rotación pura o helicoidal.
- Para las rotaciones y movimientos helicoidales, determine la posición del EIR o EIRMD.
- Para los movimientos compatibles, calcule la cantidad de movimiento, el momento cinético y la energía cinética del sistema de masas.
15 Rodadura permanente de un disco
La rodadura permanente de un disco de radio R sobre una superficie horizontal puede describirse mediante el campo de velocidades

donde la superficie horizontal se encuentra en y = − R.
Determine, para un instante dado, la velocidades de los puntos A, B, C y D situados en los cuatro cuadrantes del disco. ¿Cuál es el eje instantáneo de rotación?