Entrar Página Discusión Historial Go to the site toolbox

Segunda Convocatoria Ordinaria 2011/12 (G.I.A.)

De Laplace

Contenido

1 Rotación instantánea de un sólido rígido

Un cilindro recto de radio R en sus bases y altura 2R (sólido “2”), se mueve respecto de un tronco de cono (sólido “1”), cuyas bases son sendos círculos de radios R y 2R, y cuya generatriz tiene una longitud 2R. El movimiento es tal que, en cada instante, los sólidos “1” y “2” tienen en contacto una generatriz \overline{AB}, y la base superior del cilindro rueda sin deslizar sobre el perímetro de la base pequeña del tronco de cono. Justifique por qué el movimiento {21} es una rotación instantánea e indique razonadamente qué puntos forman el eje instantáneo de rotación de dicho movimiento.

 

 

 

2 Cuestión sobre cinemática de la partícula

Una partícula se mueve con velocidad y aceleración instantáneas, \mathbf{v}(t) y \mathbf{a}(t), tales que su producto escalar tiene un valor k2, constante en el tiempo, y su producto vectorial es un vector \mathbf{c}, también constante. Considerando que el móvil parte del reposo, determine las siguientes magnitudes:

  1. Ángulo que forman en cada instante las direcciones de la velocidad y la aceleración.
  2. Ley horaria v(t) que verifica el módulo de la velocidad instantánea (celeridad).
  3. Radio de curvatura de la trayectoria en función de la distancia s recorrida por la partícula, Rκ(s).


3 Cuestión sobre sólidos en contacto

Los sólidos rígidos de la figura se encuentran en contacto, por lo que su movimiento relativo está sometido a ciertas restricciones. El extremo esférico del sólido “2” está obligado a permanecer en el interior del carril (sólido “1”), pudiendo desplazarse sólo a lo largo de su dirección longitudinal (paralela al eje O1Y1). Por otra parte, el sólido “2” no puede ejecutar giros en torno a dicha dirección debido a que el vástago cilíndrico está insertado en la ranura del sólido “1”.
  1. Obtenga razonadamente el par cinemático (reducción cinemática en O) que describe de forma general el movimiento instantáneo permitido al sólido “2” respecto del carril (sólido “1”).
  2. ¿Cuál es el número de grados de libertad del sistema? Justifique su respuesta.


4 Movimientos planos de manivela y disco

El sistema de la figura está constituido por un plano vertical fijo OX1Y1 (sólido “1”) que en todo instante contiene a otros dos sólidos en movimiento: un disco de radio R y centro C (sólido “2”), que rueda sin deslizar sobre el eje horizontal OX1, y una manivela ranurada OA (sólido “0”) que es obligada a girar con velocidad angular constante ω alrededor de un eje permanente de rotación que pasa por el punto O y es perpendicular al plano fijo definido como sólido “1” (eje OZ1). Los movimientos de ambos sólidos se hayan vinculados entre sí porque el centro C del disco está obligado a deslizar en todo instante a lo largo de la ranura de la manivela. Considerando el movimiento {20} como el movimiento problema, se pide:
  1. Determinar el C.I.R. de dicho movimiento (I20), haciendo uso de procedimientos graficos.
  2. Utilizando como parámetro geométrico el ángulo θ indicado en la figura, obtener la reducción cinemática del movimiento {20} en el punto C, \{\vec{\omega}_{20} (\theta), \vec{v}_{20}^C (\theta)\}.
  3. Caracterizar el movimiento {20} en el instante en que θ = π / 2, indicando de forma razonada si se trata de una situación de: (a) rotación instantánea; (b) traslación instantánea; (c) movimiento helicoidal tangente, o (d) reposo instantáneo.

5 Barra conectada a un deslizador

Un cuerpo pesado de masa m, que puede considerarse como una partícula material P, está unido a un extremo de una barra de longitud l y masa despreciable que tiene su otro extremo articulado en un punto fijo O. Partícula y barra están obligadas a permanecer en el plano vertical OXY , tal que el eje OX coincide con la dirección y el sentido de la acción de la gravedad. Además, hay un deslizador puntual D, de masa despreciable que puede moverse insertado en otra barra fija horizontal OA, también de longitud l y coincidente con el eje OX. Dos resortes idénticos de longitud natural nula y constante recuperadora k conectan dicho deslizador con la partícula P y con el extremo A de la barra horizontal fija. En primera aproximación, puede despreciarse el rozamiento entre el deslizador D y la barra OA.

  1. Determine la posición del deslizador en función del angulo θ que forma la barra OP con la vertical gravitatoria, y obtenga la expresión de las fuerzas reales y vinculares que actúan sobre la partícula P en función de dicho angulo.
  2. ¿Qué relación deben verificar los par ́metros k, l y m para que el sistema se encuentre en equilibrio en la posición dada por θ = π / 6?
  3. Si se considera que entre el deslizador y la barra existe rozamiento, caracterizado por un coeficiente de valor conocido μ, determine las expresiones matemáticas (inecuaciones) que establecen el rango de las posiciones de equilibrio del sistema.
  4. Obtenga las expresiones de las energías cinética y potencial de P en función de la variable geométrica θ y su derivada temporal.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 18:34, 8 ene 2013. - Esta página ha sido visitada 2.343 veces. - Aviso legal - Acerca de Laplace