Primera Prueba de Control 2012/13 (F1 G.I.A.)
De Laplace
Contenido |
1 Posición de vértices y volumen de un paralelepípedo
Los puntos O, A, B y C son vértices no contiguos de un paralelepípedo, de manera que O y A se encuentran en un plano distinto al que contiene a B y C. Las coordenadas de estos puntos en un sistema dereferencia cartesiano son:
medidas en unidades de longitud. Determine las componentes cartesianas de los vectores
y calcule el volumen del paralelepípedo.
2 Movimiento instantáneo de una partícula
Una partícula P se mueve respecto de un sistema de referencia cartesiano OXYZ de manera que en un cierto instante t0, su velocidad y su aceleración están descritas, respectivamente, por los vectores
con sus componentes medidas en m / s2. Determine, en el instante considerado, las siguientes magnitudes cinemáticas:
- Módulo de la velocidad (celeridad) y su derivada.
- Componente normal de la aceleración y radio de curvatura de la trayectoria.
- Vector aceleración normal.
3 Partícula ensartada en aro horizontal
Una partícula P de masa m se mueve ensartada en un aro de radio R, contenido en el plano cartesiano OXY, y cuyo centro se encuentra en un punto de dicho plano, de coordenadas C(R,0,0). La partícula, que en el instante inicial (t = 0) se encuentra en el punto A de coordenadas A(2R,0,0), se mueve de manera que el ángulo que forma el radiovector con el eje OX varía en el tiempo con velocidad angular constante,- Obtenga una expresión paramétrica de la trayectoria.
- Ley horaria para el módulo de la velocidad (celeridad).
- Componentes intrínsecas de la aceleración de la partícula.
- Fuerzas aplicadas sobre la partícula, expresadas en el triedro instrínseco, sabiendo que el plano OXY es perpendicular a la vertical gravitatoria definida por el vector gravedad .
4 Sistema equivalente a dos resortes alineados
Una partícula pesada P de masa m, se halla en equilibrio por la acción de dos resortes, uno de constante recuperadora K1 y longitud natural l1, y otro de constante recuperadora K2 y longitud natural l2, tales que K1l1 = K2l2. El primer resorte tiene un extremo conectado a P y el otro a un punto fijo O; el segundo resorte se conecta a la partícula y a un punto fijo A, separado de O por una distancia d. En la situación de equilibrio, los puntos O, P y A están alineados en la dirección y el sentido de (gravedad). ¿Cuáles deben ser los valores de la constante K y la longitud natural l0 de un único resorte que conectado al punto O, produzca la misma situación de equilibrio que los dos resortes?