Problemas de cinemática del movimiento rectilíneo (GIOI)
De Laplace
1 Posición dependiente del tiempo
Una partícula se mueve de manera que su posición como función del tiempo está representada en la gráfica de la figura
- ¿Cuánto vale su desplazamiento entre y ?
- ¿Cuánto vale la distancia total recorrida en el mismo intervalo?
- ¿Cuánto vale el desplazamiento y la distancia total recorrida en el intervalo (0 s,5 s)?
- ¿Cuánto vale la velocidad media en los intervalos (0 s,5 s), (0 s,4 s) y (2 s,5 s)?
- ¿Cómo es la gráfica de la velocidad instantánea como función del tiempo?
2 Persecución policial
Las especificaciones del Seat Exeo establecen que va de 0 a 100 km/h en 9.2 s. ¿Cuánto vale su aceleración media en este periodo? ¿Cuánto vale el tiempo mínimo para atravesar un cruce de 15 m de anchura, si parte de estar parado en un semáforo? ¿Con qué velocidad llegaría al otro lado?
Un Seat León FR amarillo circula por la carretera a 160 km/h y pasa junto a un coche de la Guardia Civil parado en el arcén. Sabiendo que la benemérita usa un Seat Exeo, ¿cuál es el mínimo tiempo que tarda en alcanzar al Seat León si este no reduce su velocidad? ¿A qué distancia del punto donde estába parado lo alcanza? ¿Qué velocidad tiene el coche patrulla cuando alcanza al infractor?
3 Piedra y pájaro que se mueven verticalmente
Desde un punto a una altura 1.4 m respecto al suelo, un niño lanza verticalmente una piedra contra un pájaro que está 1.6 m más arriba. La velocidad inicial de la piedra es de 7.0 m/s. Tal como lanza la piedra, el pájaro sale volando hacia arriba con velocidad constante v1.
Despreciando el rozamiento del aire sobre la piedra y tomando g = 9.8 m/s²:
- Calcule el máximo valor de v1 con que asciende el pájaro, si la piedra es capaz de alcanzarle.
- Suponiendo que ha volado con esta velocidad máxima, calcule la velocidad instantánea de la piedra y del pájaro en el momento del impacto, así como la velocidad media de cada uno desde el lanzamiento hasta ese momento.
- Si en lugar de darle la piedra falla por poco y continúa su vuelo, ¿hasta que altura respecto al suelo llega? ¿Qué velocidad tiene cuando impacta de nuevo con el suelo?
4 Análisis numérico de movimiento
La posición de una partícula en distintos instantes de tiempo es, aproximadamente
t (s) | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
---|---|---|---|---|---|---|---|
x (m) | −1.728 | −0.440 | 0.560 | 1.296 | 1.792 | 2.072 | 2.160 |
t (s) | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 |
---|---|---|---|---|---|---|---|
x (m) | 2.080 | 1.856 | 1.512 | 1.072 | 0.560 | 0.000 | −0.584 |
t (s) | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
---|---|---|---|---|---|---|---|
x (m) | −1.168 | −1.728 | −2.240 | −2.680 | −3.024 | −3.248 | −3.328 |
Para este movimiento, halle:
- El desplazamiento entre y , así como el valor aproximado de la distancia recorrida en dicho intervalo.
- La velocidad media y la rapidez media en el intervalo anterior.
- La velocidad media en los intervalos (0.0s, 0.6s), (0.2s, 1.1s) y (0.6s, 1.5s).
- El valor aproximado de la velocidad en .
- El valor aproximado de la aceleración en .
- Sabiendo que este movimiento sigue una ley de la forma
- Calcule
- Los valores de las constantes Ak.
- El valor exacto de la distancia recorrida y la rapidez media.
- El valor exacto de la velocidad y de la aceleración en .
5 Rapidez de impacto
Una partícula está sometida exclusivamente a la acción de la gravedad. Si se lanza con velocidad + v0 en dirección vertical hacia arriba desde un punto de altura h. ¿Cuál es su velocidad cuando llega al suelo? Si en vez de lanzarse hacia arriba se lanza hacia abajo, con velocidad − v0, ¿llegará con una rapidez mayor?
6 Calculo de magnitudes a partir de v(t)
Una partícula se mueve a lo largo de una recta de forma que su velocidad sigue la ley, en el SI
entre y . La posición inicial es . Halle:
- La posición de la partícula en cada instante del intervalo indicado.
- La velocidad media de la partícula en este intervalo.
- Los valores máximo y mínimo de x.
- La distancia recorrida en ese intervalo y la rapidez media.
- Los valores máximo y mínimo de la velocidad y la rapidez.
- La aceleración en todo instante.
7 Calculo gráfico de velocidad media
La velocidad de una partícula en un movimiento rectilíneo sigue aproximadamente la gráfica de la figura cuando se representa frente al tiempo.
- ¿Cuánto vale aproximadamente la velocidad media entre y ?
- ¿Cuánto vale la distancia total recorrida por la partícula en el mismo intervalo?
- De los cuatro instantes siguientes, ¿en cual la aceleración tiene el mayor valor absoluto? (a) 0.0 s; (b) 5.0 s; (c) 8.0 s; (d) 9.5 s.
8 Aceleración lineal con el tiempo
Una partícula de masa describe un movimiento rectilíneo en el que la aceleración, como función del tiempo sigue la gráfica de la figura. La partícula parte en del reposo en x = 0.
- ¿Cuánto vale la rapidez de la partícula en ?
- ¿Cuál es su velocidad media entre y ?
- ¿Cuál es la distancia total recorrida entre y ?
- ¿Cuánto vale la rapidez media en dicho intervalo?
9 Velocidad función de la posición
La velocidad de una partícula sigue la ley
siendo x la distancia recorrida desde el instante inicial.
Calcule la aceleración de la partícula. ¿Qué tipo de movimiento describe?
10 Velocidad decreciente con la posición
Mediante una serie de sensores se mide la velocidad de un vehículo en puntos equiespaciados, obteniéndose la tabla
0.0 | 100.0 | 200.0 | 300.0 | 400.0 | 500.0 | |
108 | 90 | 72 | 54 | 36 | 18 |
- ¿Qué ley sencilla cumple la velocidad como función de la posición?
- Determine la aceleración como función de x. ¿Se trata de un movimiento uniformemente acelerado?
- Halle el valor de la aceleración en cada uno de los puntos de medida.
- Calcule el tiempo empleado en recorrer los 500 m. Si continúa con este movimiento, ¿cuánto tardará en recorrer 600 m?
11 Frenado de un fórmula 1
Cuando el Ferrari de Sebastian Vettel se acerca a la chicane de Monza, su velocidad a 150 m de ésta es de 288 km/h. Cuando entra en la chicane va a 72 km/h.
- Suponiendo que la aceleración es constante, determine su valor. Exprese el resultado en el SI y como un múltiplo de g (siendo ).
- Determine la velocidad como función de la posición y represéntela gráficamente.
- Si el McLaren de Fernando Alonso va a 180 km/h a 150m de la chicane y se detiene a 50m de ésta, ¿es su aceleración mayor o menor que la de Vettel, en valor absoluto?
12 Cálculo de velocidad media
Una partícula describe un movimiento rectilíneo tal que su velocidad instantánea cumple la ley
¿Cuánto vale la velocidad media entre t = T y t = 3T?
13 Velocidad cuadrática con la posición
Una partícula se mueve a lo largo de una recta, de forma que su velocidad vale en cada punto v = − kx2. Su posición inicial es x(t = 0) = x0
- ¿Cuáles son las unidades de k en el SI
- ¿Cuánto vale la aceleración de la partícula cuando se halla en un punto x?
- ¿Cuánto vale la posición como función del tiempo?
14 Aceleración dependiente de la posición
Una partícula se mueve sobre una recta partiendo desde con velocidad . En su movimiento, experimenta la aceleración
- ¿Qué velocidad tiene cuando llega al punto ?
- ¿Cuál es la velocidad media en todo el trayecto?
- Indique cómo cambian los resultados de los dos apartados anteriores si la aceleración es de la forma