Entrar Página Discusión Historial Go to the site toolbox

Movimiento ondulatorio

De Laplace

(Diferencias entre revisiones)
(Deducción de la ecuación de onda en una dimensión)
(Solución general de la ecuación de onda)
Línea 103: Línea 103:
siendo <math>f</math> y <math>g</math> dos funciones cualesquiera de una variable. No obstante, para una onda real de un sistema físico no pueden ser cualesquiera, sino que deben ser continua, derivable y acotada (no irse a infinito). Aun así, esto dejea mucha libertad a las soluciones: pulsos, ondas viajeras y estacionarias son soluciones de la ecuación de onda.
siendo <math>f</math> y <math>g</math> dos funciones cualesquiera de una variable. No obstante, para una onda real de un sistema físico no pueden ser cualesquiera, sino que deben ser continua, derivable y acotada (no irse a infinito). Aun así, esto dejea mucha libertad a las soluciones: pulsos, ondas viajeras y estacionarias son soluciones de la ecuación de onda.
-
[[Imagen:onda_viajera_derecha.gif|300px|right]]
+
[[Imagen:onda_viajera_derecha.gif|right]]
En particular, si <math>g=0</math> nos queda la solución
En particular, si <math>g=0</math> nos queda la solución
Línea 111: Línea 111:
que es una ''onda viajera'' que se propaga hacia <math>x</math> creciente. Esta onda conserva su forma (ya que <math>f(s)</math> es siempre la misma, solo va cambiando su posición)
que es una ''onda viajera'' que se propaga hacia <math>x</math> creciente. Esta onda conserva su forma (ya que <math>f(s)</math> es siempre la misma, solo va cambiando su posición)
-
[[Imagen:onda_viajera_izquierda.gif|300px|right]]
+
[[Imagen:onda_viajera_izquierda.gif|right]]
Si <math>f=0</math>, la solución es de la forma
Si <math>f=0</math>, la solución es de la forma
Línea 119: Línea 119:
que es una ''onda viajera'' propagándose hacia los valores de <math>x</math> decrecientes
que es una ''onda viajera'' propagándose hacia los valores de <math>x</math> decrecientes
-
[[Imagen:onda_viajera_suma.gif|300px|right]]
+
[[Imagen:onda_viajera_suma.gif|right]]
En el caso general, la solución es una superposición de una señal que se propaga hacia la derecha con una que se propaga hacia la izquierda. Así, por ejemplo, una [[onda estacionaria]] pouede verse como la suma de dos sinusoides de igual amplitud moviéndose en sentidos opuestos.
En el caso general, la solución es una superposición de una señal que se propaga hacia la derecha con una que se propaga hacia la izquierda. Así, por ejemplo, una [[onda estacionaria]] pouede verse como la suma de dos sinusoides de igual amplitud moviéndose en sentidos opuestos.

Revisión de 22:10 27 mar 2010

Contenido

1 Ondas mecánicas

2 Ondas transversales y longitudinales

2.1 Ondas longitudinales

En una onda longitudinal la vibración de las partículas se produce en la misma dirección en que se propaga la onda.

El caso más común de onda longitudinal es el de las ondas de compresión, en el que las partículas vibran en un sentido, tradmitiendo su vibración a las partículas adyacentes. A este tipo de ondas de compresión pertenece el sonido (en particular, para el caso de que el medio material sea el aire), y las ondas sísmicas P.

2.1.1 Onda sinusoidal

Cuando tenemos una oscilación periódica, cada partícula oscila en torno a su posición de equilibrio con una variación de la forma

x_i(t) = x_{i\mathrm{eq}} + s_0 \cos(\omega t - k x + \phi)\,

Aunque la onda avanza, observando cada una de las partículas individualmente, puede verse que en promedio cada una permanece inmóvil.

Imagen:Ondalongitudinal.gif

2.1.2 Pulso

Una onda (longitudinal o transversal) no tiene por qué ser necesariamente una sinusoide. Un golpe seco en un extremo de un material produce un pulso, que se mueve a lo largo de él. Este pulso es también una onda.

Imagen:Pulsolongitudinal.gif

2.2 Ondas transversales

En una onda transversal cada partícula se mueve perpendicularmente a la dirección en que avanza la onda, de forma que para una onda sinusoidal sería

y = A \cos(\omega t - k x)\,

Más en general, una onda transversal es una combinación de una señal que se propaga en un sentido más una que se propaga en el sentido opuesto, lo cual se puede escribir en la forma general

y = f\left(x-vt\right)+g(x+vt)\,

siendo f y g funciones arbitrarias de una variable (aunque si representan ondas físicas reales, además son acotadas).

2.2.1 Onda sinusoidal

Imagen:Ondatransversal.gif

2.2.2 Pulso

Imagen:Pulsotransversal.gif

2.3 Combinaciones de ondas

Una onda puede ser una combinación de una onda longitudinal y una transversal, de forma que cada partícula describe un movimiento elíptico.

En particular, la trayectoria individual puede ser una circunferencia, esto es lo que ocurre para las ondas superficiales en agua (qque no son transversales, como suele suponerse), el movimiento de cada partícula es

x = x_\mathrm{eq} + A\cos(\omega t - k x_\mathrm{eq})\,         y = A\,\mathrm{sen}\,(\omega t - kx_\mathrm{eq})\,


Imagen:Ondacircular.gif

3 Ecuación de onda

Una onda puede definirse, de forma matemática, como una solución de la ecuación de onda, que es una ecuación diferencial concreta.

Si el análisis de una magnitud de un sistema físico conduce a una ecuación diferencial de la misma forma que la ecuación de onda, se puede concluir que la solución para dicha magnitud es un comportamiento ondulatorio, aunque no se trate de un sistema mecánico y no haya verdadero movimiento de partículas (esto es lo que ocurre, por ejemplo, con las ondas electromagnéticas).

3.1 En una dimensión

Si tenemos una magnitud u que depende de una coordenada x y del tiempo, esta magnitud presenta comportamiento ondulatorio si se satisface la ecuación diferencial en derivadas parciales

\frac{\partial^2u}{\partial x^2}-\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}=0

siendo v la velocidad de la onda.

Ondas en una cuerda tensa
Por ejemplo, en el caso de una cuerda tensa puede demostrarse que los movimientos transversales verifican la ecuación
\mu\frac{\partial^2y}{\partial t^2} = F_T\frac{\partial^2y}{\partial x^2}
siendo μ la densidad lineal de masa y FT la tensión de la cuerda. Reescribiendo esta ecuación como
\frac{\partial^2y}{\partial x^2}-\frac{1}{F_T/\mu}\frac{\partial^2y}{\partial t^2} = 0
vemos que el movimiento de la cuerda tensa es ondulatorio, siendo su velocidad
v = \sqrt{\frac{F_T}{\mu}}
Ondas electromagnéticas
Al analizar el comportamiento de los campos eléctricos y magnéticos dependientes del tiempo, Maxwell llegó a la conclusión de que en el espacio vacío un campo eléctrico dependiente de una sola coordenada verifica la ecuación
\frac{\partial^2\mathbf{E}}{\partial x^2}-\mu_0\varepsilon_0\frac{\partial^2\mathbf{E}}{\partial t^2}=\mathbf{0}
siendo \varepsilon_0 y μ0 dos constantes físicas denominadas permitividad y permeabilidad del vacío:
\varepsilon_0\simeq \frac{1}{36\pi\times 10^{9}}\,\frac{\mathrm{F}}{\mathrm{m}}        \mu_0= 4\pi\times 10^{-7}\,\frac{\mathrm{H}}{\mathrm{m}}
De esta ecuación resulta que el campo eléctrico (y el magnético) tiene un comportamiento ondulatorio, siendo su velocidad
c = \frac{1}{\sqrt{\varepsilon_0\mu_0}}\simeq 3\times 10^8\,\frac{\mathrm{m}}{\mathrm{s}}
que es exactamente la velocidad de la luz. De esto Maxwell concluyó que la luz es una onda electromagnético.

3.1.1 Linealidad

Una propiedad importante de la ecuación de onda es que es lineal, esto es, que si u1 y u2 son dos soluciones, cualquier superposición

u=a u_1 + bu_2\,

con a y b constantes es también una solución.

3.1.2 Solución general de la ecuación de onda

Puede demostrarse que la solución general de la ecuación de onda

\frac{\partial^2u}{\partial x^2}-\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}=0

es una función de la forma

 u = f(x-vt) + g(x+vt)\,

siendo f y g dos funciones cualesquiera de una variable. No obstante, para una onda real de un sistema físico no pueden ser cualesquiera, sino que deben ser continua, derivable y acotada (no irse a infinito). Aun así, esto dejea mucha libertad a las soluciones: pulsos, ondas viajeras y estacionarias son soluciones de la ecuación de onda.

En particular, si g = 0 nos queda la solución

u = f(x-vt)\,

que es una onda viajera que se propaga hacia x creciente. Esta onda conserva su forma (ya que f(s) es siempre la misma, solo va cambiando su posición)

Si f = 0, la solución es de la forma

u = g(x+vt)\,

que es una onda viajera propagándose hacia los valores de x decrecientes

En el caso general, la solución es una superposición de una señal que se propaga hacia la derecha con una que se propaga hacia la izquierda. Así, por ejemplo, una onda estacionaria pouede verse como la suma de dos sinusoides de igual amplitud moviéndose en sentidos opuestos.

3.1.3 Deducción de la ecuación de onda en una dimensión

Artículo completo: Deducción de la ecuación de onda en una dimensión

3.2 En tres dimensiones

4 Ondas sinusoidales: ecuación de onda lineal

5 Ondas sinusoidales en una cuerda: velocidad y energía transmitida

5.1 Ecuación para las ondas en una cuerda tensa

Artículo completo: Ecuación para las ondas en una cuerda tensa

5.2 Potencia y energía en una onda

Artículo completo: Potencia y energía en una onda

6 Superposición de ondas: principio de superposición

Artículo completo: Superposición de ondas

6.1 Ondas estacionarias

Artículo completo: Ondas estacionarias
Imagen:OEL.gif
Imagen:OET.gif

7 Problemas

Artículo completo: Problemas de Movimiento ondulatorio

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace