Entrar Página Discusión Historial Go to the site toolbox

Problemas de fundamentos matemáticos

De Laplace

(Diferencias entre revisiones)
Línea 131: Línea 131:
empleando coordenadas cartesianas, cilíndricas y esféricas.
empleando coordenadas cartesianas, cilíndricas y esféricas.
 +
 +
==[[Cálculo de laplaciano vectorial]]==
 +
Halle el laplaciano del campo vectorial
 +
 +
<center><math>\mathbf{A}=r^n\mathbf{r}\,</math></center>
 +
 +
==[[Vector superficie]]==
 +
Demuestre que integrando alrededor de una curva cerrada, <math>\Gamma</math>, del plano <math>XY</math>, se cumple que
 +
 +
<center><math>\left| \oint_{\Gamma} \mathbf{r} \times d\mathbf{r}\,\right| = 2 S</math></center>
 +
 +
donde <math>\mathbf{r}</math> es el vector de posición y <math>S</math> el área encerrada por <math>\Gamma</math>.
 +
 +
A partir de aquí, deduzca que para una curva arbitraria en el espacio
 +
 +
<center><math>\frac{1}{2}\oint\mathbf{r} \times d\mathbf{r}= \mathbf{S}</math></center>
 +
 +
donde <math>\mathbf{S}</math> es un vector cuyas componentes son las áreas de las proyecciones de la curva sobre los planos
 +
coordenados.
 +
 +
==[[Cálculo de potenciales escalares]]==
 +
Para los campos vectoriales
 +
 +
# \mathbf
 +
==[[Campo de velocidades de un vórtice]]==
 +
El campo de velocidades de un remolino puede aproximarse por la expresión, en cilíndricas,
 +
 +
<center><math>\mathbf{v}= \frac{C}{\rho}\mathbf{u}_{\varphi}</math></center>
 +
 +
# Demuestre que este campo es irrotacional en todos los puntos en los que está definido.
 +
# Halle un potencial escalar del que derive este campo.
 +
# ¿Cuanto vale la circulación del campo de velocidades a lo largo de una circunferencia en torno al eje <math>z</math>? ¿Qué consecuencias tiene esto para el potencial escalar?
[[Categoría:Problemas de fundamentos matemáticos]]
[[Categoría:Problemas de fundamentos matemáticos]]

Revisión de 09:44 23 sep 2008

Contenido

1 Campos escalares en diferentes sistemas

Exprese los siguientes campos escalares en coordenadas cartesianas, cilíndricas y esféricas

  1. \phi = (x^2+y^2+z^2)/2\,
  2. \phi = (2z^2-x^2-y^2)/2\,
  3. \phi = (z\cos\varphi)/\rho
  4. \phi = \cot\theta - \tan\theta\,

2 Campos vectoriales en diferentes sistemas

Exprese los siguientes campos vectoriales en coordenadas cartesianas, cilíndricas y esféricas:

  1. \mathbf{A} = \mathbf{r}\,
  2. \mathbf{B} = -\dfrac{y}{x^2+y^2}\mathbf{u}_{x}+\dfrac{x}{x^2+y^2}\mathbf{u}_{y}
  3. \mathbf{C} = 2\rho z\mathbf{u}_{\rho}-(\rho^2-z^2)\mathbf{u}_{z}
  4. \mathbf{D}=r\tan\theta\,\mathbf{u}_{\theta}

3 Trazado de superficies equiescalares

Describa las superficies equipotenciales de los siguientes campos escalares

  1. \phi=\mathbf{A}{\cdot}\mathbf{r}\,
  2. \phi=r^2\,
  3. \phi=\mathbf{A}{\cdot}\mathbf{r}+r^2\,
  4. \phi= r^2/(\mathbf{A}{\cdot}\mathbf{r})
  5. \phi = x^2 + y^2\,
  6. \phi = \arctan\left(\displaystyle\frac{\sqrt{x^2+y^2}}{z}\right)
  7. \phi= \frac{x}{\sqrt{x^2+y^2}}

donde \mathbf{A} es un vector constante y \mathbf{r} es el vector de posición.

4 Cálculo de gradientes

Para los campos escalares

  1. \phi = (x^2+y^2+z^2)/2\,
  2. \phi = (2z^2-x^2-y^2)/2\,

calcule su gradiente en coordenadas cartesianas, cilíndricas y esféricas.

5 Regla de la cadena para gradientes

Si \phi = \phi(u)\,, con u = u(\mathbf{r}), demuestre que

\nabla \phi = \frac{\mathrm{d}\phi}{\mathrm{d}u} \nabla u

Encuentre \nabla \phi si

  1. \phi=\ln|\mathbf{r}|\,
  2. \phi =r^n\,
  3. \phi=\frac{1}{|\mathbf{r} -\mathbf{r}_0|}

6 Integral sobre una superficie esférica

Halle el valor de la integral

\oint \mathbf{A} \mathrm{d}S

con

\mathbf{A}=\cot\theta\mathbf{u}_{r}-\mathbf{u}_{\theta}

y la superficie de integración una esfera de radio R centrada en el origen.

7 Cálculo de divergencias y rotacionales

Para los campos vectoriales

  1. \mathbf{A} = \mathbf{r}\,
  2. \mathbf{B}=-y\mathbf{u}_{x}+x\mathbf{u}_{y}\,
  3. \mathbf{C} = -x\mathbf{u}_{x}-y\mathbf{u}_{y}+2z\mathbf{u}_{z}\,
  4. \mathbf{D} = \rho^2\cos\varphi\,\mathbf{u}_{\rho}+\rho^2\,\mathrm{sen}\,\varphi\,\mathbf{u}_{\varphi}

calcule su divergencia y su rotacional, empleando en cada caso, coordenadas cartesianas, cilíndricas y esféricas. ¿Cuáles son irrotacionales y cuáles solenoidales?

8 Cálculo de flujo

Para el campo vectorial

\mathbf{A} = (x-y)\mathbf{u}_{x}+(x+y)\mathbf{u}_{y}+z\mathbf{u}_{z}\,

calcule su flujo a través de las siguientes superficies cerradas:

  1. Un cubo de arista a, con un vértice en el origen y aristas a\mathbf{u}_{x}, a\mathbf{u}_{y} y a\mathbf{u}_{z}.
  2. Un cilindro circular de altura h y radio R, con el eje Z como eje y sus bases situadas en z = 0 y z = h.
  3. Una esfera de radio R en torno al origen de coordenadas.

En cada caso, halle el flujo por integración directa y por aplicación del teorema de Gauss.

9 Cálculo de circulación

Para el campo vectorial

\mathbf{A} = (x-y)\mathbf{u}_{x}+(x+y)\mathbf{u}_{y}+z\mathbf{u}_{z}

calcule su circulación a lo largo de las siguientes curvas cerradas:

  1. Un cuadrado de lado 2a, con vértices \pm a\mathbf{u}_{x}\pm a\mathbf{u}_{y}.
  2. Una circunferencia de radio R situada en el plano z = 0 y con centro el origen de coordenadas.
  3. Una circunferencia vertical, situada en el plano x = y y con centro el origen de coordenadas.

En cada caso, halle la circulación por integración directa y por aplicación del teorema de Stokes.

10 Demostración de identidades vectoriales

Demuestre que si \mathbf{r} es el vector de posición y \mathbf{B} un campo vectorial arbitrario

  1. (\mathbf{B}{\cdot}\nabla)\mathbf{r}=\mathbf{B}
  2. (\mathbf{B}\times\nabla){\cdot}\mathbf{r}=0
  3. (\mathbf{B}\times\nabla)\times\mathbf{r}=-2\mathbf{B}

Igualmente, para el caso particular en que $\mathbf{B}$ represente un vector constante, demuestre que

  1. \nabla(\mathbf{B}{\cdot}\mathbf{r})=\mathbf{B}
  2. \nabla{\cdot}(\mathbf{B}\times\mathbf{r})=0
  3. \nabla\times(\mathbf{B}\times\mathbf{r})=2\mathbf{B}

11 Propiedades de la Delta de Dirac

Se define la función delta de Dirac en tres dimensiones como aquella distribución que verifica

\delta(\mathbf{r})=0    (\mathbf{r}\neq 0)        \int \delta(\mathbf{r})\,\mathrm{d}\tau=1

con la última integral extendida a todo el espacio.

Pruebe que:

  1. \nabla{\cdot}\left(\displaystyle\frac{\mathbf{r}}{r^3}\right)=4\pi\delta(\mathbf{r})
  2. \nabla^2\left(\displaystyle\frac{1}{|\mathbf{r}-\mathbf{r}_0|}\right)= -4\pi\delta(\mathbf{r}-\mathbf{r}_0)

12 Cálculo de laplacianos

Calcule el laplaciano de los campos escalares

  1. φ = (x2 + y2 + z2) / 2
  2. φ = (2z2x2y2) / 2
  3. \phi = \rho^3\cos\varphi
  4. \phi = r^3\,\mathrm{sen}\,\theta

empleando coordenadas cartesianas, cilíndricas y esféricas.

13 Cálculo de laplaciano vectorial

Halle el laplaciano del campo vectorial

\mathbf{A}=r^n\mathbf{r}\,

14 Vector superficie

Demuestre que integrando alrededor de una curva cerrada, Γ, del plano XY, se cumple que

\left| \oint_{\Gamma} \mathbf{r} \times d\mathbf{r}\,\right| = 2 S

donde \mathbf{r} es el vector de posición y S el área encerrada por Γ.

A partir de aquí, deduzca que para una curva arbitraria en el espacio

\frac{1}{2}\oint\mathbf{r} \times d\mathbf{r}= \mathbf{S}

donde \mathbf{S} es un vector cuyas componentes son las áreas de las proyecciones de la curva sobre los planos coordenados.

15 Cálculo de potenciales escalares

Para los campos vectoriales

  1. \mathbf

16 Campo de velocidades de un vórtice

El campo de velocidades de un remolino puede aproximarse por la expresión, en cilíndricas,

\mathbf{v}= \frac{C}{\rho}\mathbf{u}_{\varphi}
  1. Demuestre que este campo es irrotacional en todos los puntos en los que está definido.
  2. Halle un potencial escalar del que derive este campo.
  3. ¿Cuanto vale la circulación del campo de velocidades a lo largo de una circunferencia en torno al eje z? ¿Qué consecuencias tiene esto para el potencial escalar?

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace