Coordenadas cilíndricas. Base vectorial
De Laplace
(Diferencias entre revisiones)
(→Factores de escala) |
(→¡Ojo a la dirección de los vectores!) |
||
Línea 40: | Línea 40: | ||
que | que | ||
- | + | {{dependen}} | |
- | + | ||
- | + | ||
==Artículo siguiente== | ==Artículo siguiente== |
Revisión de 20:02 20 nov 2007
Contenido |
1 Base vectorial
Con ayuda de un poco de trigonometría construimos la base vectorial de cilíndricas.
- Antes de eso, recordamos que la coordenada
es la misma en cilíndricas que en esféricas, por lo que comparte el vector unitario

- Para
y
consideramos un triángulo rectángulo en
el plano horizontal que pasa por . Al aumentar la coordenada
nos movemos a lo largo de la hipotenusa, por lo que

- El vector
es tangente a la circunferencia que pasa por
, y por tanto perpendicular a la hipotenusa

2 Factores de escala
- El factor de escala de la coordenada
es el mismo que en cartesianas

- La coordenada ρ es una distancia, por lo que variar una cantidad
equivale a recorrer una distancia
y
- La coordenada
es, en cambio, es un ángulo. Al variar la coordenada en
sobre una circunferencia de radio
, la
distancia recorrida es y el factor de escala es

2.1 ¡Ojo a la dirección de los vectores!
Los vectores y
son funciones de la coordenada
. Eso quiere decir que, dependiendo del punto que estemos considerando, apuntan en un sentido u otro. En particular, si consideramos dos puntos diametralmente opuestos respecto al eje
, el
vector
en el primer punto es exactamente el opuesto que en
el otro, esto es, que "
" no significa siempre lo mismo, ya
que
Los vectores de la base dependen de la posición
3 Artículo siguiente
Coordenadas esféricas. Base vectorial
4 Artículo anterior
Coordenadas cartesianas. Base vectorial