Coordenadas cartesianas. Base vectorial
De Laplace
Contenido |
1 Vectores de la base
Para el sistema cartesiano la construcción es inmediata. En cada punto del espacio las líneas coordenadas son rectas paralelas a los ejes ,
y
. Por tanto, los vectores de la base cartesiana son nuestros viejos conocidos
![\mathbf{u}_x = \mathbf{i}\qquad \mathbf{u}_y = \mathbf{j}\qquad \mathbf{u}_z = \mathbf{k}](/wiki/images/math/f/2/2/f229796784f7fd03fa9d9f14f55bf5fb.png)
con una diferencia de matiz. La base no está asociada a un punto en concreto. La base
sí está asociada a cada punto en concreto, sólo que en cada punto coincide con
.
2 Base ortonormal dextrógira
Los vectores de la base cartesiana forman una base ortonormal dextrógira si las coordenadas se ordenan en la forma tradicional . Los productos escalares y vectoriales vienen dados por las siguientes tablas de multiplicar
· | ![]() | ![]() | ![]() |
---|---|---|---|
![]() | 1 | 0 | 0 |
![]() | 0 | 1 | 0 |
![]() | 0 | 0 | 1 |
![]() | ![]() | ![]() | ![]() |
---|---|---|---|
![]() | 0 | ![]() | ![]() |
![]() | ![]() | 0 | ![]() |
![]() | ![]() | ![]() | 0 |
3 Factores de escala
Los factores de escala en este sistema también son sencillos. Puesto que las coordenadas representan distancias a los planos coordenados, si nos desplazamos una cantidad a lo largo de la línea coordenada
, la distancia que recorremos es... ¡
!. Lo mismo con
y con
. Por tanto, los factores de escala para las tres coordenadas valen
![h_x = 1\qquad h_y = 1\qquad h_z = 1](/wiki/images/math/c/c/a/cca8cb9e9f72c9a2f5a68c6e0e7073c2.png)
Las coordenadas cartesianas poseen una propiedad que las hace diferentes del resto de sistemas de coordenadas:
4 Vector de posición
El vector de posición en la base cartesiana y en componentes cartesianas se escribe
![\mathbf{r} = x\mathbf{u}_{x}+y\mathbf{u}_{y}+z\mathbf{u}_{z}](/wiki/images/math/6/7/4/674345badad700fa0925e11af1b16a07.png)