Entrar Página Discusión Historial Go to the site toolbox

Problemas de cinemática del sólido rígido (GIE)

De Laplace

(Diferencias entre revisiones)
(Clasificación de movimientos de un sólido (versión 2011))
Línea 111: Línea 111:
<center>[[Archivo:esquema-biela-manivela.png]]</center>
<center>[[Archivo:esquema-biela-manivela.png]]</center>
-
 
-
==[[Deslizamiento entre dos rodillos]]==
 
-
Un rodillo de radio <math>R=60\,\mathrm{cm}</math> (sólido &ldquo;0&rdquo;) rueda sin deslizar sobre un suelo horizontal &ldquo;1&rdquo; de forma que su centro <math>C</math> avanza con una celeridad constante <math>v_0=30\,\mathrm{cm}/\mathrm{s}</math> respecto al suelo. En su
 
-
marcha, este rodillo empuja a un segundo rodillo de radio <math>r=15\,\mathrm{cm}</math> (sólido &ldquo;2&rdquo;), que se ve obligado a rodar sin deslizar sobre el mismo suelo, manteniéndose tangente al primer rodillo (ver figura).
 
-
 
-
Halle la velocidad relativa de deslizamiento en el punto A de contacto entre los dos sólidos. ¿Cuál es la rapidez de este deslizamiento?
 
-
 
-
<center>[[Archivo:Dos-rodillos-01.png]]</center>
 
==[[Barra articulada rotatoria]]==
==[[Barra articulada rotatoria]]==
Línea 130: Línea 122:
<center>[[Archivo:barras-articuladas-rotatorias.png]]</center>
<center>[[Archivo:barras-articuladas-rotatorias.png]]</center>
 +
 +
==[[Deslizamiento entre dos rodillos]]==
 +
Un rodillo de radio <math>R=60\,\mathrm{cm}</math> (sólido &ldquo;0&rdquo;) rueda sin deslizar sobre un suelo horizontal &ldquo;1&rdquo; de forma que su centro <math>C</math> avanza con una celeridad constante <math>v_0=30\,\mathrm{cm}/\mathrm{s}</math> respecto al suelo. En su
 +
marcha, este rodillo empuja a un segundo rodillo de radio <math>r=15\,\mathrm{cm}</math> (sólido &ldquo;2&rdquo;), que se ve obligado a rodar sin deslizar sobre el mismo suelo, manteniéndose tangente al primer rodillo (ver figura).
 +
 +
Halle la velocidad relativa de deslizamiento en el punto A de contacto entre los dos sólidos. ¿Cuál es la rapidez de este deslizamiento?
 +
 +
<center>[[Archivo:Dos-rodillos-01.png]]</center>
==[[Clasificación de movimientos de un sólido (versión 2011)]]==
==[[Clasificación de movimientos de un sólido (versión 2011)]]==

Revisión de 19:37 19 dic 2012

Contenido

1 Caso de campo de velocidades de un sólido

El campo de velocidades instantáneo de un sólido rígido tiene la expresión, en el sistema internacional

\vec{v}(x,y,z)=\left((7.2 + 0.8 y + 1.6 z)\vec{\imath}+(3.6 - 0.8 x + 1.6 z)\vec{\jmath}
-(7.2+1.6 x+1.6 y)\vec{k}\right)\frac{\mathrm{m}}{\mathrm{s}}
  1. Determine la velocidad angular, \vec{\omega}, y la velocidad del origen de coordenadas, \vec{v}_0.
  2. Halle la velocidad del punto \vec{r}_1=(-5.0\vec{\imath}-6.0\vec{k})\,\mathrm{m}.
  3. ¿Qué tipo de movimiento describe el sólido en este instante?
  4. Halle la ecuación del eje instantáneo de rotación y mínimo deslizamiento (o eje instantáneo de rotación, en su caso).

2 Movimiento de un sólido conocido un eje

Un sólido rígido se encuentra en rotación instantánea alrededor de un eje que pasa por el punto A(1,0, − 1) y lleva la dirección del vector \vec{e}=2\vec{\imath}-2\vec{\jmath}-\vec{k}, de tal forma que la velocidad del punto B(0,2,1) es \vec{v}_B=-4\vec{\imath}-6\vec{\jmath}+c\vec{k}

  1. Halle el valor de la constante c.
  2. Calcule la velocidad angular instantánea.
  3. Calcule la velocidad del punto P(1,1,0).

Todas las cantidades están expresadas en las unidades del SI.

3 Clasificación de movimientos de un sólido

Se tiene un sólido formado por ocho masas iguales, m=100\,\mathrm{g}, situadas en los vértices de un cubo de lado b=10\,\mathrm{cm}. En un instante dado, una de ellas se encuentra en el origen de coordenadas y las aristas son paralelas a los ejes de coordenadas.

Archivo:ocho-masas.png

Considere los casos siguientes para las velocidades de las masas situadas en \vec{r}_1=b\vec{\imath}, \vec{r}_2=b\vec{\jmath} y \vec{r}_3=b\vec{k}

Caso \vec{v}_1 (cm/s) \vec{v}_2 (cm/s) \vec{v}_3 (cm/s)
I \vec{\jmath}-\vec{k} -\vec{\imath}+\vec{k} \vec{\imath}-\vec{\jmath}
II \vec{\imath}+\vec{\jmath}-\vec{k} \vec{k} 2\vec{\imath}-\vec{\jmath}
III \vec{\jmath}-\vec{k} -\vec{\imath}+\vec{k} \vec{\imath}-\vec{\jmath}+\vec{k}
IV \vec{\imath}-\vec{\jmath} \vec{\imath}-\vec{\jmath} \vec{\imath}-\vec{\jmath}
V \vec{\imath}+2\vec{\jmath} \vec{\jmath}+2\vec{k} 2\vec{\imath}+\vec{k}
VI \vec{\imath}+\vec{\jmath}+\vec{k} \vec{\imath}+\vec{\jmath}+\vec{k} \vec{0}
  1. Identifique cuáles de las situaciones anteriores son compatibles con la condición de rigidez.
  2. Para las que sí lo son, identifique si se trata de un movimiento de traslación pura, rotación pura o helicoidal.
  3. Para las rotaciones y movimientos helicoidales, determine la posición del EIR o EIRMD.
  4. Para los movimientos compatibles, calcule la cantidad de movimiento, el momento cinético y la energía cinética del sistema de masas.

4 Rapidez de los puntos de un tornillo

Un tornillo de radio 2 mm y paso de rosca 1 mm avanza impulsado por un destornillador de forma que su punta se mueve a 2 mm/s. Determine la rapidez de los puntos del filete del tornillo.

5 Rodadura y deslizamiento de un disco

Un disco de radio R y masa M rueda y desliza sobre el plano horizontal z = 0 de forma que la velocidad del punto de contacto con el suelo, A, y del diametralmente opuesto, B son de la forma

\vec{v}_A = v_A\vec{\imath}\qquad \vec{v}_B = v_B\vec{\imath}
  1. Calcule la velocidad angular del disco.
  2. Halle la velocidad del centro del disco, C, así como de los puntos D y E situados en los extremos de un diámetro horizontal.
  3. Determine la posición del centro instantáneo de rotación.
  4. Indique a qué se reducen los resultados anteriores en los casos particulares siguientes:
    1. vA = − vB
    2. vA = 0
    3. vA = vB

6 Rodadura y pivotamiento de una pelota

Una pelota de radio R rueda y pivota sin deslizar sobre el plano horizontal z = 0, de forma que las velocidades de los puntos \vec{r}_1=(\vec{\imath}+\vec{k})R y \vec{r}_2=(-\vec{\imath}+\vec{k})R valen respectivamente \vec{v}_1=(2\vec{\imath}+\vec{\jmath}-2\vec{k})v_0 y \vec{v}_2=(2\vec{\imath}+3\vec{\jmath}+2\vec{k})v_0.

  1. Determine la velocidad angular de rodadura y la de pivotamiento.
  2. Halle la velocidad del centro de la bola.
  3. Determine la ecuación del eje instantáneo de rotación.

7 Deslizamiento de una barra

Una barra metálica de 1.00 m de longitud resbala apoyada en el suelo y en una pared vertical. En un momento dado su extremo inferior se encuentra a una distancia de 60 cm de la esquina y se mueve con velocidad de 12 cm/s alejándose de la esquina

  1. ¿Con qué velocidad se mueve el extremo superior de la barra?
  2. Considerando un sistema de ejes centrado en la esquina, con el suelo como eje OX y la pared como eje OZ, ¿dónde se encuentra el C.I.R. de la barra en el instante anteriormente descrito?

8 Movimiento de un sistema biela-manivela

Un sistema biela-manivela está formado por: una barra fija (el eje “1”); una barra (la manivela “0”) de longitud L, articulada en el punto O del eje y que forma un ángulo θ(t) con él; y una segunda barra (la biela “2”), también de longitud L, articulada en el punto A de la manivela y cuyo segundo extremo B está obligado a deslizar por el eje.

  1. Halle las velocidades de los puntos A y B de la biela.
  2. Determine la velocidad angular de la biela respecto al eje.
  3. Localice el centro instantáneo de rotación (CIR) de la biela respecto al eje.
  4. Suponga el caso L=50\,\mathrm{cm} y que en un instante dado tg(θ) = 0.75 siendo \dot{\theta}=-2.00\,\mathrm{rad}/\mathrm{s}. Calcule la velocidades respecto al eje de los puntos A y B de la biela, su velocidad angular y las coordenadas del CIR.
Archivo:esquema-biela-manivela.png

9 Barra articulada rotatoria

Se tiene un sistema articulado formado por dos barras de la misma masa y la misma longitud h situadas sobre una superficie horizontal. La primera barra tiene un extremo O fijo, de forma que gira alrededor de él con velocidad angular constante Ω respecto a un sistema de ejes fijos OXY. La segunda barra está articulada en el extremo A de la primera y gira respecto de los mismos ejes fijos con una velocidad angular . En el instante t = 0 el sistema está completamente extendido a lo largo del eje OX.

  1. Calcule la velocidad del punto de articulación A y del extremo libre B de la segunda barra en el instante t = 0.
  2. Localice la posición del centro instantáneo de rotación I del movimiento de la segunda barra respecto a los ejes fijos para el instante t = 0.
  3. Determine la posición del extremo B cuando ha pasado medio periodo, t = π / Ω, así como la velocidad de este punto en ese instante.
  4. Escriba las ecuaciones horarias de la posición del punto B para todo instante.
  5. Calcule la aceleración del extremo B de la barra en el instante t = 0. ¿Es nula alguna de sus componentes intrínsecas?
Archivo:barras-articuladas-rotatorias.png

10 Deslizamiento entre dos rodillos

Un rodillo de radio R=60\,\mathrm{cm} (sólido “0”) rueda sin deslizar sobre un suelo horizontal “1” de forma que su centro C avanza con una celeridad constante v_0=30\,\mathrm{cm}/\mathrm{s} respecto al suelo. En su marcha, este rodillo empuja a un segundo rodillo de radio r=15\,\mathrm{cm} (sólido “2”), que se ve obligado a rodar sin deslizar sobre el mismo suelo, manteniéndose tangente al primer rodillo (ver figura).

Halle la velocidad relativa de deslizamiento en el punto A de contacto entre los dos sólidos. ¿Cuál es la rapidez de este deslizamiento?

Archivo:Dos-rodillos-01.png

11 Clasificación de movimientos de un sólido (versión 2011)

Se tiene un sólido formado por ocho masas iguales, m=100\,\mathrm{g}, situadas en los vértices de un cubo de lado b=10\,\mathrm{cm}. En un instante dado, una de ellas se encuentra en el origen de coordenadas y las aristas son paralelas a los ejes de coordenadas.

Archivo:ocho-masas.png

Considere los casos siguientes para las velocidades de las masas situadas en \vec{r}_1=b\vec{\imath}, \vec{r}_2=b\vec{\jmath} y \vec{r}_3=b\vec{k}

Caso \vec{v}_1 (cm/s) \vec{v}_2 (cm/s) \vec{v}_3 (cm/s)
I 2\vec{\imath}+2\vec{\jmath}+4\vec{k} 2\vec{\imath}+2\vec{\jmath}+4\vec{k} 2\vec{k}
II 2\vec{\imath}+\vec{\jmath}+2\vec{k} 3\vec{\imath}+2\vec{\jmath} 2\vec{\imath}+4\vec{\jmath} + 2\vec{k}
III 2\vec{\imath}+2\vec{\jmath}+2\vec{k} 2\vec{\imath}+2\vec{\jmath}+2\vec{k} 2\vec{\imath}+2\vec{\jmath}+2\vec{k}
IV 2\vec{\imath}+3\vec{\jmath} \vec{\imath}+2\vec{\jmath}-\vec{k} 4\vec{\imath}+4\vec{\jmath}+2\vec{k}
V 2\vec{\imath}+\vec{k} 4\vec{\imath}+2\vec{\jmath}+3\vec{k} 3\vec{\imath}+\vec{\jmath}+2\vec{k}
VI 2\vec{\imath}+\vec{\jmath}+2\vec{k} 3\vec{\imath}+2\vec{\jmath}+2\vec{k} -\vec{\imath}+\vec{\jmath}+2\vec{k}
  1. Identifique cuáles de las situaciones anteriores son compatibles con la condición de rigidez.
  2. Para las que sí lo son, identifique si se trata de un movimiento de traslación pura, rotación pura o helicoidal.
  3. Para las rotaciones y movimientos helicoidales, determine la posición del EIR o EIRMD.
  4. Para los movimientos compatibles, calcule la cantidad de movimiento, el momento cinético y la energía cinética del sistema de masas.

12 Rodadura permanente de un disco

La rodadura permanente de un disco de radio R sobre una superficie horizontal puede describirse mediante el campo de velocidades

\vec{v}(\vec{r}) = \vec{v}_0 +\vec{\omega}\times\vec{r}\qquad \qquad
\vec{v}_0 = v_0\vec{\imath}\qquad\vec{\omega}=-\frac{v_0}{R}\vec{k}

donde la superficie horizontal se encuentra en y = − R.

Determine, para un instante dado, la velocidades de los puntos A, B, C y D situados en los cuatro cuadrantes del disco. ¿Cuál es el eje instantáneo de rotación?

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace