Entrar Página Discusión Historial Go to the site toolbox

Problemas de dinámica de la partícula (GIE)

De Laplace

(Diferencias entre revisiones)
(Resorte con rozamiento seco)
(Amortiguamiento viscoso)
Línea 45: Línea 45:
==[[Amortiguamiento viscoso]]==
==[[Amortiguamiento viscoso]]==
El rozamiento que experimenta una pequeña partícula en medio denso y viscoso como un aceite es de la forma <math>\vec{F}_r=-\gamma\vec{v}</math>. Se construye un sensor de balística, en el que una bala de masa <math>m</math> impacta horizontalmente en un bloque de silicona en el que se cumple la ley anterior. Si la bala recorre una distancia <math>x_0</math> hasta pararse. ¿Con qué velocidad impactó en el bloque?
El rozamiento que experimenta una pequeña partícula en medio denso y viscoso como un aceite es de la forma <math>\vec{F}_r=-\gamma\vec{v}</math>. Se construye un sensor de balística, en el que una bala de masa <math>m</math> impacta horizontalmente en un bloque de silicona en el que se cumple la ley anterior. Si la bala recorre una distancia <math>x_0</math> hasta pararse. ¿Con qué velocidad impactó en el bloque?
 +
 +
==[[Partícula suspendida de dos muelles]]==
 +
Una partícula de peso 2&thinsp;N cuelga del techo suspendida de dos muelles en paralelo, ambos de longitud natural 15&thinsp;cm. El muelle 1 tiene constante <math>k_1=10\,\mathrm{N}/\mathrm{m}</math> y el 2 <math>k_2 = 40\,\mathrm{N}/\mathrm{m}</math>.
 +
 +
# En el equilibrio, ¿cuál es la distancia de la partícula al techo?
 +
# Si, estando en la posición anterior, se corta la unión de la masa con el muelle 2, ¿cuánto vale la amplitud de las oscilaciones resultantes?
==[[Dos resortes enfrentados]]==
==[[Dos resortes enfrentados]]==

Revisión de 08:13 21 ene 2012

Contenido

1 Movimiento a partir de una fuerza conocida

Una partícula material de masa m parte del origen de coordenadas con velocidad \vec{v}_0=v_0\vec{\jmath}, encontrándose sometida en todo momento a la fuerza dependiente de la posición

\vec{F}(x,y,z)=Az\vec{\imath}-By\vec{\jmath}+C\vec{k}

siendo \vec{r}=x\vec{\imath}+y\vec{\jmath}+z\vec{k} la posición instantánea de la partícula, y A, B y C constantes positivas conocidas.

Calcule la posición, velocidad y aceleración instantáneas de la partícula para todo instante de tiempo, t.

2 Masa girando alrededor de una mano

Una masa de 0.5 kg situada en el extremo de una cuerda de 50 cm de longitud se hace girar horizontalmente con la mano de manera que da 2 vueltas por segundo. ¿Puede estar la cuerda completamente horizontal? Determine la tensión de la cuerda y el ángulo que forma con la horizontal.

Archivo:mano-hilo-pesa.jpg

3 Dos bloques apilados

Sobre una mesa horizontal se encuentran apilados dos bloques, siendo el inferior de masa m1 y el superior de masa m2. El coeficiente de rozamiento estático del bloque inferior con la mesa vale μ1 y el del segundo bloque con el primero μ2. Los coeficientes de rozamiento dinámico valen lo mismo que los estáticos.

  1. Para el estado de reposo y sin fuerzas laterales aplicadas, indique la fuerza que la mesa ejerce sobre el bloque inferior y el que éste ejerce sobre el superior.
  2. Suponiendo μ1 = 0, se tira del bloque inferior con una fuerza horizontal F. ¿Qué fuerzas actúan sobre cada bloque? ¿Cuánto debe valer como mínimo esta fuerza si se quiere que el bloque superior se quede atrás? ¿Cuánto vale la aceleración de cada bloque para valores de la fuerza inferiores o superiores a este valor crítico?
  3. Resuelva las mismas cuestiones que en el apartado anterior, suponiendo ahora \mu_1\neq 0.
  4. Calcule los valores de las diferentes fuerzas y las aceleraciones si m_1 = 3.00\,\mathrm{kg}, m_2 = 2.00\,\mathrm{kg}, μ1 = 0.30, μ2 = 0.50 para (a) F=10.0\,\mathrm{N} (b) F=20.0\,\mathrm{N} (c) F=50.0\,\mathrm{N}
Archivo:dos-masas-apiladas.png

4 Dos masas, un plano y un hilo

Se tienen dos masas m1 y m2 atadas por un hilo ideal, inextensible y sin masa, que pasa por una polea también ideal (de masa despreciable y sin rozamiento). La masa m1 se encuentra sobre un plano inclinado un ángulo α. La masa m2 cuelga verticalmente.

  1. Suponiendo que no hay rozamiento, determine la aceleración de las masas. ¿Cuál debe ser la relación entre ellas para que el sistema se quede en equilibrio?
  2. Entre la masa m1 y el plano existe un coeficiente de rozamiento (estático y dinámico) μ. ¿Entre qué valores mínimo y máximo debe estar m2 para que las masas queden en equilibrio?
  3. Sea m_1=5.00\,\mathrm{kg}, tg(α) = 0.75 y μ = 0.30. ¿Cuánto vale la aceleración de las masas si (a) m_2 = 1.50\,\mathrm{kg}, (b) m_2 =3.00\,\mathrm{kg} y (c) m_2 = 4.50\,\mathrm{kg}.
Archivo:dos-masas-plano-polea.png

5 Doble máquina de Atwood

La doble máquina de Atwood de la figura está formada por tres masas unidas a través de dos cuerdas ideales (inextensibles y sin masa) y dos poleas también ideales (de masa despreciable y sin rozamiento). Determine la aceleración de cada una de las masas, así como las tensiones de las dos cuerdas.

Archivo:doble-maquina-atwood.png

6 Curvas y peraltes

El circuito de Indianápolis posee curvas de 200m de radio peraltadas un ángulo de 9º12'.

  1. Si no se considera el rozamiento, ¿con qué rapidez debe ir un coche si no quiere deslizarse ni hacia arriba ni hacia abajo?
  2. El coeficiente de rozamiento lateral de un coche con la pista vale μ = 1.50. ¿Cuáles son las velocidades máximas y mínimas que puede adquirir un coche sin derrapar?

7 Amortiguamiento viscoso

El rozamiento que experimenta una pequeña partícula en medio denso y viscoso como un aceite es de la forma \vec{F}_r=-\gamma\vec{v}. Se construye un sensor de balística, en el que una bala de masa m impacta horizontalmente en un bloque de silicona en el que se cumple la ley anterior. Si la bala recorre una distancia x0 hasta pararse. ¿Con qué velocidad impactó en el bloque?

8 Partícula suspendida de dos muelles

Una partícula de peso 2 N cuelga del techo suspendida de dos muelles en paralelo, ambos de longitud natural 15 cm. El muelle 1 tiene constante k_1=10\,\mathrm{N}/\mathrm{m} y el 2 k_2 = 40\,\mathrm{N}/\mathrm{m}.

  1. En el equilibrio, ¿cuál es la distancia de la partícula al techo?
  2. Si, estando en la posición anterior, se corta la unión de la masa con el muelle 2, ¿cuánto vale la amplitud de las oscilaciones resultantes?

9 Dos resortes enfrentados

Una partícula de masa m se encuentra situada entre dos resortes de longitudes en reposo l10 y l20, que se encuentran atados a paredes opuestas separadas una distancia L. Los muelles poseen constantes de recuperación k1 y k2.

  1. Determine la posición de equilibrio de la masa. ¿A cuanto tiende esta posición si k_1\to\infty? ¿Y si k_2\to\infty?
  2. Estando en la posición de equilibrio, se le comunica a la masa una velocidad v0. Determine la amplitud y la frecuencia de las oscilaciones resultantes.
Archivo:dos-resortes-enfrentados.png

10 Resorte con rozamiento seco

Se tiene una masa m=5.00\,\mathrm{kg} atada a un resorte de constante k=10.0\,\mathrm{N}/\mathrm{cm} y longitud en reposo l_0=150\,\mathrm{mm}. La masa reposa sobre una superficie horizontal sobre la que existe un pequeño coeficiente de rozamiento μ = 0.10. El muelle se comprime una cantidad b=50\,\mathrm{mm} respecto a su posición de equilibrio.

  1. Despreciando en primer lugar el rozamiento, determine la máxima distancia de la pared a la que llega la masa.
  2. Teniendo en cuenta el rozamiento, ¿cuánto vale la distancia de máximo alejamiento?
  3. Al volver a comprimirse el muelle, la masa no retorna a su posición inicial. ¿A qué distancia de la pared se detiene instantáneamente?
  4. ¿Al cabo de cuantas oscilaciones se detiene del todo? ¿Dónde se queda parada?
Archivo:resorte-pared-rozamiento.png

11 Partícula cargada en campo magnético uniforme

Una carga q en campo magnético experimenta una fuerza

\vec{F}=q\vec{v}\times\vec{B}

Se trata de deducir cómo se mueve la partícula en el caso en el que el campo magnético sea una constante independiente de la posición.

\vec{B}=B_0\vec{k}
  1. Suponga en primer lugar que la velocidad inicial de la partícula es paralela al campo magnético, \vec{v}_0 = v_0\vec{k}. ¿Cuánto vale la aceleración en el instante inicial? ¿Cuanto vale la velocidad un instante posterior? ¿Cómo es el movimiento de la carga en ese caso?
  2. Suponga ahora el caso de una carga cuya velocidad inicial es perpendicular al campo magnético, \vec{v}_0 = v_0\vec{\imath}.
    1. Demuestre que el movimiento resultante es un movimiento plano.
    2. Demuestre que la rapidez del movimiento es constante
    3. Calcule el radio de curvatura de la trayectoria que describe la carga
    4. ¿Qué tipo de movimiento describe la partícula?
  3. Suponga, por último, una velocidad inicial arbitraria \vec{v}_0 = v_{x0}\vec{\imath}+v_{z0}\vec{k}. Combinando los resultados anteriores, ¿qué movimiento realiza la carga?

12 Partícula en el interior de un tubo

Una partícula de masa m se encuentra en el interior de un tubo estrecho, el cual se halla en todo momento contenido en el plano OXY girando con velocidad angular ω constante alrededor del eje OZ, de forma que la posición de la partícula puede escribirse como

x = \rho\,\mathrm{cos}(\omega t)\,        y= \rho\,\mathrm{sen}(\omega t)

donde \rho = \rho(t)\,, función que hay que determinar, define la posición de la partícula a lo largo del tubo.

  1. Halle la ecuación diferencial que debe satisfacer \rho(t)\, sabiendo que el tubo no puede ejercer fuerza en la dirección longitudinal (no hay rozamiento).
  2. Suponga que \rho(t) =A\mathrm{e}^{\omega t}\,
    1. Compruebe que se trata de una solución de la ecuación diferencial
    2. Calcule la fuerza ejercida por el tubo en cada instante.
    3. Halle las componentes intrínsecas de la aceleración

13 Fuerza en anilla ensartada en varillas

Para el sistema de la anilla ensartada en dos varillas, calcule la fuerza que cada una de las barras ejerce cada instante sobre la anilla, suponiendo ´esta de masa m, (a) despreciando el peso, (b) considerando el peso en la dirección de OY negativo. Tenga en cuenta que cada barra solo puede ejercer fuerza perpendicularmente a sí misma, no a lo largo de ella.

Archivo:anilla-dos-varillas.png

14 Partícula suspendida de resorte y barra

Una partícula de peso P = 30\,\mathrm{N} se encuentra atada simultáneamente a una barra rígida de longitud L=80\,\mathrm{cm} y a un muelle de longitud natural nula y constante k=40\,\mathrm{N}/\mathrm{m}. Los anclajes de la barra y el resorte distan D=100\,\mathrm{cm}.

  1. Determine la posición de equilibrio de la masa. ¿Cuánto vale la tensión de la barra en este momento? ¿Cuál es la longitud del resorte?
  2. Suponga que se corta la unión de la masa con el resorte. ¿Qué tipo de movimiento describe la masa a partir de ese momento? Halle la rapidez máxima que alcanza.
  3. Suponga que, en lugar de lo anterior, se corta la unión de la masa con la barra. ¿Qué movimiento describe en ese caso? Calcule la amplitud y frecuencia del movimiento resultante. Halle la rapidez máxima que alcanza.
Archivo:masa-resorte-barra.png

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace