Movimiento ondulatorio
De Laplace
(→Función de onda) |
(→En una dimensión) |
||
Línea 56: | Línea 56: | ||
<center><math>\frac{\partial^2u}{\partial x^2}-\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}=0</math></center> | <center><math>\frac{\partial^2u}{\partial x^2}-\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}=0</math></center> | ||
+ | |||
+ | siendo <math>v</math> la velocidad de la onda. | ||
+ | |||
+ | ;Ondas en una cuerda tensa | ||
+ | :Por ejemplo, en el caso de una cuerda tensa puede demostrarse que los movimientos transversales verifican la ecuación | ||
+ | |||
+ | <center><math>\mu\frac{\partial^2y}{\partial t^2} = F_T\frac{\partial^2y}{\partial x^2}</math></center> | ||
+ | |||
+ | :siendo <math>\mu</math> la densidad lineal de masa y <math>F_T</math> la tensión de la cuerda. Reescribiendo esta ecuación como | ||
+ | |||
+ | <center><math>\frac{\partial^2y}{\partial x^2}-\frac{1}{F_T/\mu}\frac{\partial^2y}{\partial t^2} = 0</math></center> | ||
+ | |||
+ | :vemos que el movimiento de la cuerda tensa es ondulatorio, siendo su velocidad | ||
+ | |||
+ | <center><math>v = \sqrt{\frac{F_T}{\mu}}</math></center> | ||
+ | |||
+ | ;Ondas electromagnéticas:Al analizar el comportamiento de los campos eléctricos y magnéticos dependientes del tiempo, Maxwell llegó a la conclusión de que en el espacio vacío un campo eléctrico dependiente de una sola coordenada verifica la ecuación | ||
+ | |||
+ | <center><math>\frac{\partial^2\mathbf{E}{\partial x^2}-\mu_0\varepsilon_0\frac{\partial^2\mathbf{E}{\partrial t^2}=\mathbf{0}</math></center> | ||
+ | |||
+ | :siendo <math>\varepsilon_0</math> y <math>\mu_0</math> dos constantes físicas denominadas permitividad y permeabilidad del vacío: | ||
+ | |||
+ | <center><math>\varepsilon_0\simeq \frac{36\pi\times 10^{9}}\,\frac{\mathrm{F}}{\mathrm{m}}</math>{{qquad}}{{qquad}}<math>\mu_0= 4\pi\times 10^{-7}\,\frac{\mathrm{H}}{\mathrm{m}}</math></center> | ||
+ | |||
+ | :De esta ecuación resulta que el campo eléctrico (y el magnético) tiene un comportamiento ondulatorio, siendo su velocidad | ||
+ | |||
+ | <center><math>c = \frac{1}{\sqrt{\varepsilon_0\mu_0}}\simeq 3\times 10^8\,\frac{\mathrm{m}}{\mathrm{s}}</math></center> | ||
+ | |||
+ | :que es exactamente la velocidad de la luz. De esto Maxwell concluyó que la luz es una onda electromagnético. | ||
===Deducción de la ecuación de onda en una dimensión=== | ===Deducción de la ecuación de onda en una dimensión=== |
Revisión de 21:39 27 mar 2010
Contenido |
1 Ondas mecánicas
2 Ondas transversales y longitudinales
2.1 Ondas longitudinales
En una onda longitudinal la vibración de las partículas se produce en la misma dirección en que se propaga la onda.
El caso más común de onda longitudinal es el de las ondas de compresión, en el que las partículas vibran en un sentido, tradmitiendo su vibración a las partículas adyacentes. A este tipo de ondas de compresión pertenece el sonido (en particular, para el caso de que el medio material sea el aire), y las ondas sísmicas P.
2.1.1 Onda sinusoidal
Cuando tenemos una oscilación periódica, cada partícula oscila en torno a su posición de equilibrio con una variación de la forma
Aunque la onda avanza, observando cada una de las partículas individualmente, puede verse que en promedio cada una permanece inmóvil.
2.1.2 Pulso
Una onda (longitudinal o transversal) no tiene por qué ser necesariamente una sinusoide. Un golpe seco en un extremo de un material produce un pulso, que se mueve a lo largo de él. Este pulso es también una onda.
2.2 Ondas transversales
En una onda transversal cada partícula se mueve perpendicularmente a la dirección en que avanza la onda, de forma que para una onda sinusoidal sería
Más en general, una onda transversal es una combinación de una señal que se propaga en un sentido más una que se propaga en el sentido opuesto, lo cual se puede escribir en la forma general
siendo f y g funciones arbitrarias de una variable (aunque si representan ondas físicas reales, además son acotadas).
2.2.1 Onda sinusoidal
2.2.2 Pulso
2.3 Combinaciones de ondas
Una onda puede ser una combinación de una onda longitudinal y una transversal, de forma que cada partícula describe un movimiento elíptico.
En particular, la trayectoria individual puede ser una circunferencia, esto es lo que ocurre para las ondas superficiales en agua (qque no son transversales, como suele suponerse), el movimiento de cada partícula es
3 Ecuación de onda
Una onda puede definirse, de forma matemática, como una solución de la ecuación de onda, que es una ecuación diferencial concreta.
Si el análisis de una magnitud de un sistema físico conduce a una ecuación diferencial de la misma forma que la ecuación de onda, se puede concluir que la solución para dicha magnitud es un comportamiento ondulatorio, aunque no se trate de un sistema mecánico y no haya verdadero movimiento de partículas (esto es lo que ocurre, por ejemplo, con las ondas electromagnéticas).
3.1 En una dimensión
Si tenemos una magnitud u que depende de una coordenada x y del tiempo, esta magnitud presenta comportamiento ondulatorio si se satisface la ecuación diferencial en derivadas parciales
siendo v la velocidad de la onda.
- Ondas en una cuerda tensa
- Por ejemplo, en el caso de una cuerda tensa puede demostrarse que los movimientos transversales verifican la ecuación
- siendo μ la densidad lineal de masa y FT la tensión de la cuerda. Reescribiendo esta ecuación como
- vemos que el movimiento de la cuerda tensa es ondulatorio, siendo su velocidad
- Ondas electromagnéticas
- Al analizar el comportamiento de los campos eléctricos y magnéticos dependientes del tiempo, Maxwell llegó a la conclusión de que en el espacio vacío un campo eléctrico dependiente de una sola coordenada verifica la ecuación
- siendo y μ0 dos constantes físicas denominadas permitividad y permeabilidad del vacío:
- De esta ecuación resulta que el campo eléctrico (y el magnético) tiene un comportamiento ondulatorio, siendo su velocidad
- que es exactamente la velocidad de la luz. De esto Maxwell concluyó que la luz es una onda electromagnético.