Entrar Página Discusión Historial Go to the site toolbox

Imán esférico

De Laplace

Contenido

1 Enunciado

Se dispone de una esfera de radio R con una imanación permanente \mathbf{M}=M_0\mathbf{u}_{z}.

  1. Determine la expresión integral del potencial vector magnético. Calcule el valor de la integral. Hállese, a partir de \mathbf{A}, el valor de \mathbf{B} y de \mathbf{H} en todos los puntos del espacio.
  2. Describa cualitativamente la forma de \mathbf{B}, \mathbf{H} y \mathbf{M}
  3. Calcule las corrientes de magnetización equivalentes, las ecuaciones y las condiciones de contorno para \mathbf{B}.
  4. Halle la distribución de cargas magnéticas equivalentes y el problema de ecuaciones y condiciones de contorno para \mathbf{H}.

2 Potencial vector

La expresión integral de \mathbf{A} en términos de la magnetización es una generalización del potencial vector de un dipolo puntual,

\mathbf{A}=\frac{\mu_0}{4\pi}\int \frac{\mathbf{M}\times(\mathbf{r}-\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|^3}\,\mathrm{d}\tau'

con la integral extendida a todo el espacio.

En nuestro caso, en que la magnetización es uniforme en la esfera y nula en el exterior, podemos extraer \mathbf{M} de la integral y escribir

\mathbf{A}=\mu_0\mathbf{M}_0\times\left(\frac{1}{4\pi} \int_{r<R}\frac{\mathbf{r}-\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|^3}\,\mathrm{d}\tau'\right)

donde la integral se realiza únicamente en la esfera. Recordando, como en el problema de la esfera polarizada uniformemente, la integral que define el campo eléctrico creado por una distribución de carga

\mathbf{E}=\frac{1}{4\pi\varepsilon_0} \int \rho(\mathbf{r}')\frac{\mathbf{r}-\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|^3}\,\mathrm{d}\tau'

Vemos que la integral en cuestión es formalmente equivalente a la que da el campo eléctrico creado por una distribución

\rho(\mathbf{r})=\begin{cases}\varepsilon_0 & r<R \\ 0  & si r>R\end{cases}

(esto no quiere decir que la integral sea un campo eléctrico, sólo que su forma es la misma). El campo que crearía esta distribución es conocido y vale

\frac{1}{4\pi}\int\frac{\mathbf{r}-\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|^3}\,\mathrm{d}\tau'= \begin{cases}\displaystyle\frac{1}{3}\mathbf{r} & r<R \\ & \\ \displaystyle\frac{1}{3}\,\displaystyle\frac{R^3}{r^3}\mathbf{r} &  r>R$\end{cases}

y, por tanto,

\mathbf{A}=\frac{\mu_0}{3}\mathbf{M}\times\mathbf{r}

en el interior de la esfera y

\mathbf{A}=\frac{\mu_0}{4\pi} \frac{\mathbf{m}\times\mathbf{r}}{r^3}        \mathbf{m}=\frac{4\pi}{3}R^3\mathbf{M}_0

3 Forma de los campos

4 Corrientes de magnetización

5 Cargas magnéticas

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace