Entrar Página Discusión Historial Go to the site toolbox

Problemas de herramientas matemáticas (GIE)

De Laplace

Contenido

1 Problemas de boletín

1.1 Arco capaz

Sean A y B dos puntos diametralmente opuestos en una circunferencia c. Sea P otro punto de la misma circunferencia. Demuestre que los vectores \overrightarrow{AP} y \overrightarrow{BP} son ortogonales.

Inversamente, sean A, B y P tres puntos tales que \overrightarrow{AP} \perp \overrightarrow{BP}. Pruebe que el centro de la circunferencia que pasa por A, B y P se encuentra en el punto medio del segmento AB.

1.2 Coseno y seno de una diferencia

A partir del producto escalar y del vectorial de dos vectores del plano, con módulo unidad, demuestre las fórmulas trigonométricas para el coseno y el seno de una diferencia de dos ángulos.

Archivo:diferencia-angulos.png

1.3 Construcción de una base

Dados los vectores

\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}\qquad\qquad\vec{a}=6\vec{\imath}+9\vec{\jmath}+6\vec{k}

Construya una base ortonormal dextrógira \{\vec{T},\vec{N},\vec{B}\}, tal que

  1. El primer vector, \vec{T}, vaya en la dirección y sentido de \vec{v}
  2. El segundo, \vec{N}, esté contenido en el plano definido por \vec{v} y \vec{a} y apunte hacia el mismo semiplano (respecto de \vec{v}) que el vector \vec{a}.
  3. El tercero, \vec{B}, sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.

1.4 Ejemplo de operaciones con dos vectores

Dados los vectores

\vec{v}=2.0\vec{\imath}+3.5\vec{\jmath}-4.2\vec{k}\qquad\qquad\vec{a}=4.5\vec{\imath}-2.2\vec{\jmath}+1.5\vec{k}
  1. ¿Qué ángulo forman estos dos vectores?
  2. ¿Qué área tiene el paralelogramo que tiene a estos dos vectores por lados?
  3. Escriba \vec{a} como suma de dos vectores, uno paralelo a \vec{v} y otro ortogonal a él.

1.5 Formulas vectoriales potencialmente incorrectas

De las siguientes expresiones, indique cuáles son necesariamente incorrectas. Aquí las diferentes letras representan las magnitudes definidas en el problema de ejemplos de cálculo de dimensiones, R es una distancia y \vec{r} el vector de posición; t es el tiempo:

(a) \vec{F} = m\frac{\vec{v}\times\vec{a}}{\vec{v}}
(b) \vec{F}\times(\vec{v}\times\vec{a}) = (\vec{p}\cdot\vec{a})\times\vec{a}
(c) \frac{\vec{L}}{R} = \vec{F}t-\vec{v}
(d) (\vec{r}\times\vec{p})\vec{L} = R(\vec{r}\cdot\vec{p})\vec{p}
(e) \frac{\vec{F}-\vec{p}/t}{m} =  \frac{\vec{r}-\vec{v}t}{t^2-t}
(f) \frac{1}{\vec{r}} = \frac{\vec{r}}{r^2}
(g) L  = \vec{r}\times\vec{p}
(h) \frac{W}{t} = \vec{F}\times\left(\vec{v}-\frac{R}{t}\right)

1.6 Determinación de un vector a partir de sus proyecciones

Se tiene un vector conocido, no nulo, \vec{A} y uno que se desea determinar, \vec{X}. Se dan como datos su producto escalar y su producto vectorial por \vec{A}

\vec{A}\cdot\vec{X}=k\qquad \vec{A}\times\vec{X} = \vec{C}

Determine el valor de \vec{X}. ¿Es suficiente una sola de las dos ecuaciones para hallar \vec{X}?

1.7 Cálculo de las componentes de un vector

De una fuerza \vec{F}_1 se sabe que tiene de intensidad 10 N y que los ángulos que forma con los semiejes OX y OY positivos valen 60°. Determine las componentes cartesianas de esta fuerza. ¿Existe solución? ¿Es única?

Si a esta fuerza se le suma otra \vec{F}_2 = (-10\vec{\imath}-10\vec{\jmath})\,\mathrm{N}, ¿qué ángulo forma la resultante con los ejes coordenados?

1.8 Fuerza debida a un globo aerostático

Un globo aerostático está atado al suelo por una cuerda de 50 m y ejerce una fuerza de 2000 N sobre esta cuerda (en la dirección de esta y tirando de ella). El globo se halla a una altura de 30 m y se halla empujado por un fuerte viento del noroeste. Exprese el vector fuerza en la base canónica, si el eje X apunta en la dirección este y el eje Y en la dirección norte.

1.9 Base vectorial girada

Considere la terna de vectores

\vec{u}_1 =
\cos(\theta)\vec{\imath}+\mathrm{sen}(\theta)\vec{\jmath} \qquad
\vec{u}_2 =
-\mathrm{sen}(\theta)\vec{\imath}+\cos(\theta)\vec{\jmath} \qquad
\vec{u}_3 = \vec{k}
  1. Pruebe que constituyen una base ortonormal dextrógira. ¿Cómo están situados estos vectores?
  2. Halle la transformación inversa, es decir, exprese \{\vec{\imath},\vec{\jmath},\vec{k}\} como combinación de \{\vec{u}_1,\vec{u}_2,\vec{u}_3\}.
  3. Para el caso particular en que tg(θ) = 3 / 4, particularice las ecuaciones de transformación y exprese el vector \vec{F}=10\vec{\imath}-15\vec{\jmath}+3\vec{k} en la nueva base.

2 Problemas adicionales

2.1 Cálculo de ángulo entre dos vectores

Halle el ángulo que forman los vectores

\vec{A}=24\vec{\imath}-32\vec{k}\qquad\mbox{y}\qquad \vec{B}=16\vec{\jmath}+12\vec{k}

3 Problemas de derivación e integración en física

3.1 Cálculo numérico de la derivada del seno

Se trata de calcular la derivada de f(x)=\,\mathrm{sen}(x^\circ) para x^\circ=0^\circ.

  1. Exprese el cociente Δf / Δx, cuando x_1^\circ=0^\circ y x_2^\circ=x^\circ.
  2. Calcule numéricamente el cociente anterior para x^\circ=1^\circ, x^\circ=0.1^\circ, x^\circ=0.01^\circ,… hasta x^\circ=(10^{-6})^\circ. ¿A cuanto tiende el límite?
  3. Multiplique los resultados anteriores por 180. A la vista de los resultados, ¿cuanto vale la derivada de \mathrm{sen}(x^\circ) en x=0^\circ?

3.2 Aproximación numérica de la velocidad y la aceleración

La posición de una partícula en distintos instantes de tiempo es, aproximadamente

t (s) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x (m) 0.00 -0.04 -0.06 -0.06 -0.04 0.00 0.06 0.14 0.24 0.36 0.50
  1. ¿En qué momento es máxima la velocidad? ¿En qué momento es nula? Calcule aproximadamente la velocidad en el intervalo entre t=0\,\mathrm{s} y t=1\,\mathrm{s}.
  2. Calcule aproximadamente la aceleración en el mismo intervalo.

3.3 Ejemplos de velocidad en función de la posición

1) La velocidad de una partícula sigue la ley

v = \sqrt{Ax}

siendo x la distancia recorrida desde el instante inicial.

Calcule la aceleración de la partícula. ¿Qué tipo de movimiento describe?

2) Una partícula se mueve en línea recta, cumpliendo su velocidad instantánea

v = \sqrt{A- B x^2}

con A y B constantes positivas.

  1. ¿En que se medirá B en el SI?
  2. ¿Cómo depende de la posición la aceleración de la partícula?

3.4 Cálculo de la masa de una esfera

La densidad de masa de una esfera de radio R viene dada por la ley

\rho = A(R-r)\qquad (0<r<R)

Sabiendo que el área de una superficie esférica de radio r vale r2, calcule el volumen y la masa de la esfera de radio R. ¿Cuánto vale su densidad media?

3.5 Ejemplo de integración numérica

Una partícula se mueve a lo largo de una recta, siendo su velocidad (en el SI) como función del tiempo, la dada por la gráfica

Archivo:velocidad-circulo.png

La partícula parte de s = 0.

  1. Aprovechando los puntos en que la curva cruza la cuadrícula, calcule aproximadamente la posición en que se encontrará la partícula en t=16\,\mathrm{s}.
  2. Calcule el valor exacto de esta posición, sabiendo que la ley para la velocidad es
v = \sqrt{1+16t-t^2}
¿Cuál es el error relativo cometido en el apartado anterior?

3.6 Trabajo en una semicircunferencia

Una partícula se encuentra sometida a su peso \vec{F}=-mg\vec{k}. Halle el trabajo realizado por esta fuerza

W= \int_A^B\vec{F}\cdot\mathrm{d}\vec{r}

cuando la partícula pasa de \vec{r}_A=R\vec{k} a \vec{r}_B=-R\vec{k} moviéndose sobre una semicircunferencia vertical de radio R con centro el origen de coordenadas.

3.7 Variación de la presión atmosférica

La presión atmosférica en un punto se debe al peso por unidad de superficie de la columna de aire situada sobre él. En un modelo de la atmósfera, se supone que la densidad del aire disminuye con la altura como

\rho(z) = \rho_0\mathrm{e}^{-\alpha z}\,

extendiéndose la altura hasta el infinito.

  1. Determine el peso del aire situado por encima de un cuadrado de lado L situado a una altura z0 sobre el nivel del mar. A partir de aquí halle como varía la presión atmosférica con la altura.
  2. Sabiendo que al nivel del mar la presión es de 101325 Pa y la densidad del aire es de 1.225 kg/m³, calcule el valor de la constante α.
  3. Usando esta fórmula halle el valor de la presión atmosférica en La Paz, situada a 3650 m de altitud.
  4. Halle el valor aproximado de la masa de aire de la atmósfera.

En todos los pasos, razone los cálculos y justifique las aproximaciones que se hagan.

4 Preguntas de test

4.1 Suma de vectores ligados

Dados los vectores ligados de la figura, ¿cuánto vale su suma vectorial?

Archivo:suma-ligados-0.png

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace