Entrar Página Discusión Historial Go to the site toolbox

Problemas de cinemática del sólido rígido (GIE)

De Laplace

Contenido

1 Ejemplo de campo de velocidades de un sólido

El campo de velocidades instantáneo de un sólido rígido tiene la expresión, en el sistema internacional

\vec{v}(x,y,z)=\left((7.2 + 0.8 y + 1.6 z)\vec{\imath}+(3.6 - 0.8 x + 1.6 z)\vec{\jmath}
-(7.2+1.6 x+1.6 y)\vec{k}\right)\frac{\mathrm{m}}{\mathrm{s}}
  1. Determine la velocidad angular, \vec{\omega}, y la velocidad del origen de coordenadas, \vec{v}_0.
  2. Halle la velocidad del punto \vec{r}_1=(-5.0\vec{\imath}-6.0\vec{k})\,\mathrm{m}.
  3. ¿Qué tipo de movimiento describe el sólido en este instante?
  4. Halle la ecuación del eje instantáneo de rotación y mínimo deslizamiento (o eje instantáneo de rotación, en su caso).

2 Movimiento de un sólido conocido un eje

Un sólido rígido se encuentra en rotación instantánea alrededor de un eje que pasa por el punto A(1,0, − 1) y lleva la dirección del vector \vec{e}=2\vec{\imath}-2\vec{\jmath}-\vec{k}, de tal forma que la velocidad del punto B(0,2,1) es \vec{v}_B=-4\vec{\imath}-6\vec{\jmath}+c\vec{k}

  1. Halle el valor de la constante c.
  2. Calcule la velocidad angular instantánea.
  3. Calcule la velocidad del punto P(1,1,0).

Todas las cantidades están expresadas en las unidades del SI.

3 Clasificación de movimientos de un sólido

Se tiene un sólido formado por ocho masas iguales, m=100\,\mathrm{g}, situadas en los vértices de un cubo de lado b=10\,\mathrm{cm}. En un instante dado, una de ellas se encuentra en el origen de coordenadas y las aristas son paralelas a los ejes de coordenadas.

Considere los casos siguientes para las velocidades de las masas situadas en \vec{r}_1=b\vec{\imath}, \vec{r}_2=b\vec{\jmath} y \vec{r}_3=b\vec{k}


Caso \vec{v}_1 (cm/s) \vec{v}_2 (cm/s) \vec{v}_3 (cm/s)
I 2\vec{\imath}+2\vec{\jmath}+4\vec{k} 2\vec{\imath}+2\vec{\jmath}+4\vec{k} 2\vec{k}
II 2\vec{\imath}+\vec{\jmath}+2\vec{k} 3\vec{\imath}+2\vec{\jmath} 2\vec{\imath}+4\vec{\jmath} + 2\vec{k}
III 2\vec{\imath}+2\vec{\jmath}+2\vec{k} 2\vec{\imath}+2\vec{\jmath}+2\vec{k} 2\vec{\imath}+2\vec{\jmath}+2\vec{k}
IV 2\vec{\imath}+3\vec{\jmath} \vec{\imath}+2\vec{\jmath}-\vec{k} 4\vec{\imath}+4\vec{\jmath}+2\vec{k}
V 2\vec{\imath}+\vec{k} 4\vec{\imath}+2\vec{\jmath}+3\vec{k} 3\vec{\imath}+\vec{\jmath}+2\vec{k}
VI 2\vec{\imath}+\vec{\jmath}+2\vec{k} 3\vec{\imath}+2\vec{\jmath}+2\vec{k} -\vec{\imath}+\vec{\jmath}+2\vec{k}
  1. Identifique cuáles de las situaciones anteriores son compatibles con la condición de rigidez.
  2. Para las que sí lo son, identifique si se trata de un movimiento de traslación pura, rotación pura o helicoidal.
  3. Para las rotaciones y movimientos helicoidales, determine la posición del EIR o EIRMD.
  4. Para los movimientos compatibles, calcule la cantidad de movimiento, el momento cinético y la energía cinética del sistema de masas.

4 Rapidez de los puntos de un tornillo

Un tornillo de radio 2 mm y paso de rosca 1 mm avanza impulsado por un destornillador de forma que su punta se mueve a 2 mm/s. Determine la rapidez de los puntos del filete del tornillo.

5 Rodadura permanente de un disco

La rodadura permanente de un disco de radio R sobre una superficie horizontal puede describirse mediante el campo de velocidades

\vec{v}(\vec{r}) = \vec{v}_0 +\vec{\omega}\times\vec{r}\qquad \qquad
\vec{v}_0 = v_0\vec{\imath}\qquad\vec{\omega}=-\frac{v_0}{R}\vec{k}

donde la superficie horizontal se encuentra en y = − R.

Determine, para un instante dado, la velocidades de los puntos A, B, C y D situados en los cuatro cuadrantes del disco. ¿Cuál es el eje instantáneo de rotación?

6 Rodadura y pivotamiento de una pelota

Una pelota de radio R rueda y pivota sin deslizar sobre el plano horizontal z = 0, de forma que las velocidades de los puntos \vec{r}_1=(\vec{\imath}+\vec{k})R y \vec{r}_2=(-\vec{\imath}+\vec{k})R valen respectivamente \vec{v}_1=(2\vec{\imath}+\vec{\jmath}-2\vec{k})v_0 y \vec{v}_2=(2\vec{\imath}+3\vec{\jmath}+2\vec{k})v_0.

  1. Determine la velocidad angular de rodadura y la de pivotamiento.
  2. Halle la velocidad del centro de la bola.
  3. Determine la ecuación del eje instantáneo de rotación.

7 Movimiento de un sistema biela-manivela

Un sistema biela-manivela está formado por: una barra fija (el eje “1”); una barra (la manivela “0”) de longitud L, articulada en el punto O del eje y que forma un ángulo θ(t) con él; y una segunda barra (la biela “2”), también de longitud $L$, articulada en el punto A de la manivela y cuyo segundo extremo B está obligado a deslizar por el eje.

  1. Halle las velocidades de los puntos A y B de la biela.
  2. Determine la velocidad angular de la biela respecto al eje.
  3. Localice el centro instantáneo de rotación (CIR) de la biela respecto al eje.
  4. Suponga el caso L=50\,\mathrm{cm} y que en un instante dado tg(θ) = 0.75 siendo \dot{\theta}=-2.00\,\mathrm{rad}/\mathrm{s}. Calcule la velocidades respecto al eje de los puntos A y B de la biela, su velocidad angular y las coordenadas del CIR.
Archivo:esquema-biela-manivela.png

8 Deslizamiento entre dos rodillos

Un rodillo de radio R=60\,\mathrm{cm} (sólido 0) rueda sin deslizar sobre un suelo horizontal “1” de forma que su centro C avanza con una celeridad constante v_0=30\,\mathrm{cm}/\mathrm{s} respecto al suelo. En su marcha, este rodillo empuja a un segundo rodillo de radio r=15\,\mathrm{cm} (sólido 2), que se ve obligado a rodar sin deslizar sobre el mismo suelo, manteniéndose tangente al primer rodillo (ver figura).

Halle la velocidad relativa de deslizamiento en el punto A de contacto entre los dos sólidos. ¿Cuál es la rapidez de este deslizamiento?

Archivo:Dos-rodillos-01.png

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace