Entrar Página Discusión Historial Go to the site toolbox

Potencial eléctrico debido a una polarización

De Laplace

El potencial eléctrico debido a una polarización es la suma de los potenciales debidos a cada dipolo.

El potencial de un solo dipolo situado en el origen de coordenadas es

\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0}\,\frac{\mathbf{p}\cdot\mathbf{r}}{r^3}

Si en lugar de encontrarse en el origen se encuentra en un punto \mathbf{r}_0 empleamos la posición relativa a este punto

\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0}\,\frac{\mathbf{p}\cdot(\mathbf{r}-\mathbf{r}_0)}{|\mathbf{r}-\mathbf{r}_0|^3}

Si ahora consideramos un conjunto de dipolos situados en posiciones \mathbf{r}_i el potencial eléctrico total será la suma de los potenciales individuales

\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0}\sum_{i=1}^N\frac{\mathbf{p}\cdot(\mathbf{r}-\mathbf{r}_i)}{|\mathbf{r}-\mathbf{r}_i|^3}

Cuando el número de dipolos es muy grande, la suma se puede aproximar por una integral. Para ello, dividimos el volumen total polarizado en elementos de volumen Δτ' y aplicamos que, según la definición de polarización de un medio material

\sum_{\mathbf{p}_i\in\Delta\tau'}\mathbf{p}_i = \mathbf{P}(\mathbf{r}')\,\Delta\tau'

con lo que queda

\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0}\sum_{\Delta\tau'}\left(\sum_{\mathbf{p}_i\in\Delta\tau'}\frac{\mathbf{p}\cdot(\mathbf{r}-\mathbf{r}_i)}{|\mathbf{r}-\mathbf{r}_i|^3}\right)\simeq  \frac{1}{4\pi\varepsilon_0}\sum_{\Delta\tau'}\left(\mathbf{P}(\mathbf{r}')\cdot\frac{(\mathbf{r}-\mathbf{r}_i)}{|\mathbf{r}-\mathbf{r}_i|^3}\Delta\tau'\right) \to \frac{1}{4\pi\varepsilon_0}\int_\tau \mathbf{P}(\mathbf{r}'){\cdot}\frac{(\mathbf{r}-\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|^3}\,\mathrm{d}\tau'

Esta integral suele ser difícil de calcular por métodos analíticos. Uno de los pocos ejemplos en los que es factible es el de una esfera polarizada uniformemente.

Una descripción alternativa es mediante las densidades de carga de polarización o de carga ligada, definidas como

\rho_p = -\nabla{\cdot}\mathbf{P}        \sigma_p = -\mathbf{n}{\cdot}[\mathbf{P}]\,

La última fórmula, con el salto en la polarización, se aplica a una interfaz entre dos dieléctricos. Si uno de ellos es el vacío (en el cual \mathbf{P}=\mathbf{0}), esta expresión se reduce a \sigma_p = \mathbf{P}{\cdot}\mathbf{n}. En términos de ρp y σp el potencial es

\phi = \frac{1}{4\pi\varepsilon_0}\int_\tau\frac{\rho_p}{|\mathbf{r}-\mathbf{r}'|}\,\mathrm{d}\tau'+
\frac{1}{4\pi\varepsilon_0}\oint_{\partial\tau}\frac{\sigma_p}{|\mathbf{r}-\mathbf{r}'|}\,\mathrm{d}S'

Empleando las densidades de carga de polarización, las ecuaciones de la electrostática en presencia de dieléctricos se escriben como

\nabla{\cdot}\mathbf{E} = \frac{\rho_l+\rho_p}{\varepsilon_0}        \nabla\times \mathbf{E} =\mathbf{0}

con las condiciones de salto

\mathbf{n}{\cdot}[\mathbf{E}] = \frac{\sigma_l+\sigma_p}{\varepsilon_0}        \mathbf{n}\times
[\mathbf{E}]=\mathbf{0}

siendo ρl y σl las densidades de carga libre, definidas como aquellas que no son de polarización.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace