Entrar Página Discusión Historial Go to the site toolbox

Problemas de máquinas térmicas (GIE)

De Laplace

Contenido

1 Ejemplo de máquina térmica

Una máquina térmica consume 240 kg de carbón por hora, siendo el poder calorífico de este combustible de 13.0×10³ kcal/kg. Si la máquina tiene un rendimiento del 25% calcule el trabajo suministrado por la máquina y el calor cedido al foco frío en una hora

2 Rendimiento de un ciclo de tres pasos

Para un cilindro que sigue el proceso cíclico descrito en el problema “sucesión de tres procesos cuasiestáticos”, determine el rendimiento del ciclo considerado como una máquina térmica.

3 Sobrecoste originado por la luz de un frigorífico

El interruptor de la luz interior de un frigorífico está estropeado, de modo que la luz está siempre encendida. La luz interior consume una potencia de 40.0 W. Si la eficiencia del frigorífico es 1.3, y el coste de la electricidad es de 14.2 céntimos por kWh, calcule el incremento en el consumo del frigorífico y el coste añadido por año si no se arregla el interruptor.

4 Rendimiento de una máquina térmica real

Una máquina térmica que funciona entre 200°C y 80.0°C alcanza un 20.0% de su rendimiento teórico máximo. ¿Cuanta energía debe absorber para realizar 10.0 kJ de trabajo?

5 Ejemplo de frigorífico de Carnot

Una máquina frigorífica de las que se emplean para fabricar hielo funciona segín un ciclo de Carnot reversible absorbiendo calor de un tanque de agua a 0.00°C y cediéndolo al aire en el interior de un local que se mantiene a 26.0°C. La máquina fabrica 223 kg de hielo en un día. Calcule el trabajo consumido y el calor cedido al aire.

6 Rendimiento de un aparato de aire acondicionado

Para refrescar una habitación se emplea un aparato de aire acondicionado con un coeficiente de desempeño (COP) de 4. El exterior se encuentra a 34°C mientras que el interior del despacho se mantiene a 24°C. El despacho, que esta vacío, tiene una ventana de vidrio por la cual entra calor desde el exterior. Si el calor que entra por la ventana en la unidad de tiempo es \dot{Q}=4224\,\mathrm{W}, calcule el trabajo por segundo (potencia) que debe realizar el aparato para mantener la temperatura interior y la cantidad de calor que es arrojada al exterior.

7 Eficiencia de un ciclo Otto

Un ciclo Otto ideal modela el comportamiento de un motor de explosión. Este ciclo está formado por seis pasos, según se indica en la figura. Pruebe que el rendimiento de este ciclo viene dado por la expresión

\eta = 1-\frac{1}{r^{\gamma-1}}

siendo r = VA / VB la razón de compresión igual al cociente entre el volumen al inicio del ciclo de compresión y al final de él. Para ello, halle el rendimiento a partir del calor que entra en el sistema y el que sale de él; exprese el resultado en términos de las temperaturas en los vértices del ciclo y, con ayuda de la ley de Poisson, relacione este resultado con los volúmenes VA y VB.

Imagen:esquema-ciclo-otto.png

8 Caso práctico de ciclo Otto

Suponga un ciclo Otto ideal con una relación de compresión de 8. Al inicio de la fase de compresión, el aire está a 100 kPa y 17°C. En la combustión se añaden 800 kJ/kg de calor. Determine la temperatura y la presión máximas que se producen en el ciclo, la salida de trabajo neto y el rendimiento de este motor.

9 Eficiencia de un ciclo Diesel

Un motor diésel puede modelarse con el ciclo ideal formado por seis pasos reversibles, según se indica en la figura. Pruebe que el rendimiento de este ciclo viene dado por la expresión

\eta = 1 -\frac{1}{\gamma r^{\gamma-1}}\,\frac{r_c^\gamma-1}{r_c-1}

siendo r = VA / VB la razón de compresión y rc = VC / VB la relación de combustión. El método para obtener este resultado es análogo al empleado para el ciclo Otto. Compare los rendimientos del ciclo Otto y el Diesel. ¿Cuáles son las ventajas e inconvenientes respectivos?

Imagen:esquema-ciclo-diesel.png

10 Caso práctico de ciclo Diesel

Suponga un motor diésel con una capacidad máxima de 1900 cm³. En este motor el aire a la entrada está a una presión de 1 atm y una temperatura de 17°C. Si para este motor la razón de compresión es 18 y la de combustión vale 2, determine los volúmenes, presiones y temperaturas de cada vértice del ciclo, así como su rendimiento y el calor y el trabajo intercambiados por el motor.

11 Eficiencia de un ciclo Brayton

Un ciclo Brayton (o Joule) ideal modela el comportamiento de una turbina, como las empleadas en las aeronaves. Este ciclo está formado por cuatro pasos reversibles, según se indica en la figura. Pruebe que el rendimiento de este ciclo viene dado por la expresión

\eta = 1-\frac{1}{r^{(\gamma-1)/\gamma}}

siendo r = pB / pA la relación de presión igual al cociente entre la presión al final del proceso de compresión y al inicio de él. El método para obtener este resultado es análogo al empleado para el ciclo Otto.

Imagen:esquema-ciclo-brayton.png

12 Caso práctico de ciclo Brayton

Una central eléctrica de turbina de gas que opera en un ciclo Brayton ideal tiene una relación de presión de 8. La temperatura del gas es de 300 K en la entrada del compresor y de 1300 K en la entrada de la turbina. Determine la temperatura del gas a la salida del compresor y de la turbina, y la eficiencia de esta turbina.

13 Ejemplo de bomba de calor de Carnot

Una bomba de calor se emplea para mantener caliente una vivienda que se encuentra a 20.0°C siendo la temperatura exterior -5.00°C. Suponiendo que la bomba de calor es una máquina de Carnot invertida, calcule cuantos julios de energía procedentes del medio ambiente exterior serán transferidos al interior de la vivienda por cada julio de energía eléctrica consumida. Explique las ventajas e inconvenientes de este sistema de calefacción frente a uno convencional de disipación de energía en una resistencia eléctrica.

14 Ciclo de Stirling

Un Ciclo de Stirling ideal, sin regeneración, está formado por los siguientes pasos:

Inicialmente tenemos 500 cm³ de aire a 300 K y 100 kPa (estado A)

A→B Se comprime el gas de forma isoterma, hasta que se reduce su volumen a 50 cm³
B→C Se calienta el gas hasta una temperatura de 450 K, manteniendo fijado su volumen.
C→D Se expande el gas a temperatura constante hasta que vuelve a su volumen inicial.
D→A Se enfría el gas manteniendo constante su volumen hasta que su temperatura vuelve a ser la inicial

Para este ciclo.

  1. Indique gráficamente como sería en un diagrama pV.
  2. Calcule el trabajo y el calor que entran en el sistema en cada uno de los cuatro pasos.
  3. Calcule el rendimiento del ciclo.

En un ciclo de Stirling con regeneración, el calor liberado en el proceso D\→A no se pierde sino que se emplea para efectuar el calentamiento en B→C

  1. Calcule el rendimiento del ciclo de Stirling con regeneración. ¿Es mayor o menor que el de una máquina de Carnot que opere entre las mismas temperaturas?

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace