Entrar Página Discusión Historial Go to the site toolbox

Problemas de herramientas matemáticas (GIOI)

De Laplace

(Diferencias entre revisiones)
(Teoremas del seno y del coseno]])
(Teoremas del seno y del coseno)
Línea 28: Línea 28:
[[Teoremas del seno y del coseno (GIOI)|Solución]]
[[Teoremas del seno y del coseno (GIOI)|Solución]]
 +
 +
==Construcción de una base==
 +
Dados los vectores
 +
 +
<center><math>\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}\qquad\qquad\vec{a}=6\vec{\imath}+9\vec{\jmath}+6\vec{k}</math></center>
 +
 +
Construya una base ortonormal dextrógira <math>\{\vec{T},\vec{N},\vec{B}\}</math>, tal que
 +
 +
# El primer vector, <math>\vec{T}</math>, vaya en la dirección y sentido de <math>\vec{v}</math>
 +
# El segundo, <math>\vec{N}</math>, esté contenido en el plano definido por <math>\vec{v}</math> y <math>\vec{a}</math> y apunte hacia el mismo semiplano (respecto de <math>\vec{v}</math>) que el vector <math>\vec{a}</math>.
 +
# El tercero, <math>\vec{B}</math>, sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.
 +
 +
[[Construcción de una base|Solución]]

Revisión de 15:18 7 oct 2019

Contenido

1 Arco capaz

Sean A y B dos puntos diametralmente opuestos en una circunferencia c. Sea P otro punto de la misma circunferencia. Demuestre que los vectores \overrightarrow{AP} y \overrightarrow{BP} son ortogonales.

Inversamente, sean A, B y P tres puntos tales que \overrightarrow{AP} \perp \overrightarrow{BP}. Pruebe que el centro de la circunferencia que pasa por A, B y P se encuentra en el punto medio del segmento AB.

Solución

2 Coseno y seno de una diferencia

A partir del producto escalar y del vectorial de dos vectores del plano, con módulo unidad, demuestre las fórmulas trigonométricas para el coseno y el seno de una diferencia de dos ángulos.

Archivo:diferencia-angulos.png

Solución

3 Teoremas del seno y del coseno

Con ayuda de productos escalares y vectoriales demuestre los teoremas del coseno

c^2 = a^2 + b^2 -2ab\,\mathrm{cos}(C)

y del seno

\frac{\mathrm{sen}\,A}{a}=\frac{\mathrm{sen}\,B}{b}=\frac{\mathrm{sen}\,C}{c}

en un triángulo de lados a, b y c, y ángulos opuestos A, B y C.

Archivo:Ejemplo_triangulo_2.png

Solución

4 Construcción de una base

Dados los vectores

\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}\qquad\qquad\vec{a}=6\vec{\imath}+9\vec{\jmath}+6\vec{k}

Construya una base ortonormal dextrógira \{\vec{T},\vec{N},\vec{B}\}, tal que

  1. El primer vector, \vec{T}, vaya en la dirección y sentido de \vec{v}
  2. El segundo, \vec{N}, esté contenido en el plano definido por \vec{v} y \vec{a} y apunte hacia el mismo semiplano (respecto de \vec{v}) que el vector \vec{a}.
  3. El tercero, \vec{B}, sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.

Solución

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace