Entrar Página Discusión Historial Go to the site toolbox

Problemas de dinámica del sólido rígido (GIOI)

De Laplace

(Diferencias entre revisiones)
(Rodadura por una pendiente)
(Barra sujeta por un cable)
Línea 38: Línea 38:
[[Barra sujeta por un cable|Solución]]
[[Barra sujeta por un cable|Solución]]
 +
 +
==Movimiento de una mancuerna ideal==
 +
Supongamos dos masas iguales ''m'' unidas por una barra rígida de longitud ''b'', sin masa (lo que sería una mancuerna ideal). Las masas reposan sobre un plano horizontal, sobre el que pueden moverse sin rozamiento. A una de las masas se le comunica una velocidad inicial <math>\vec{v}_0</math> perpendicular a la línea de la barra, mientras que la otra se encuentra inicialmente en reposo. ¿Cuánto valen la cantidad de movimiento, el momento cinético respecto al CM y la energía cinética de la barra? ¿Cómo es el movimiento del sistema a partir de ese momento?
 +
 +
[[Movimiento de una mancuerna ideal|Solución]]
==Fuerza sobre una barra==
==Fuerza sobre una barra==

Revisión de 10:29 6 ene 2020

Contenido

1 Momento de inercia de un sistema de partículas

Se tiene un sólido formado por ocho partículas de masa m situadas en los vértices de un cubo de arista b.

Archivo:ocho-masas.png

Halle el momento de inercia del cubo respecto a los siguientes ejes:

  1. Uno perpendicular a una cara y que pase por el centro del cubo.
  2. Uno que pase por dos vértices opuestos.
  3. Uno que pase por los centros de dos aristas opuestas.
  4. Uno que pase por una arista

Solución

2 Momento de inercia de sólidos esféricos

Calcule el momento de inercia de una esfera maciza, de masa M y radio R alrededor de de un eje que pasa por su centro.

A partir del resultado anterior, halle el momento de inercia de una esfera hueca, de masa M, radio interior R1 y exterior R2 respecto a un eje que pasa por su centro. ¿A qué se reduce el resultado cuando la corona se reduce a una superficie esférica de radio R?

Solución

3 Momento de inercia de sólidos cilíndricos

Halle los siguientes momentos de inercia de sólidos de densidad homogénea:

  1. Una superficie cilíndrica hueca, de masa M, radio R y altura H.
  2. Un cilindro macizo, de masa M, radio R y altura H.
  3. Una corona cilíndrica de masa M, radio interior R1 y exterior R2, con altura H

En todos los casos, el momento de inercia debe hallarse respecto al eje del cilindro.

Solución

4 Barra sujeta por un cable

Una mesa plegable está articulada a la pared por un extremo, y cuelga de la pared por un cable tirante. En dos dimensiones esto se puede modelar como una barra de longitud b y masa m distribuida uniformemente. La barra está articulada por su extremo A y atada por su extremo B a una pared vertical, de forma que el cable forma un ángulo de 45° con la vertical.

Archivo:barra-cable-tenso.png

Calcule la tensión del cable, así como la fuerza de reacción en el punto A.

Solución

5 Movimiento de una mancuerna ideal

Supongamos dos masas iguales m unidas por una barra rígida de longitud b, sin masa (lo que sería una mancuerna ideal). Las masas reposan sobre un plano horizontal, sobre el que pueden moverse sin rozamiento. A una de las masas se le comunica una velocidad inicial \vec{v}_0 perpendicular a la línea de la barra, mientras que la otra se encuentra inicialmente en reposo. ¿Cuánto valen la cantidad de movimiento, el momento cinético respecto al CM y la energía cinética de la barra? ¿Cómo es el movimiento del sistema a partir de ese momento?

Solución

6 Fuerza sobre una barra

Sobre una barra de longitud b y masa M situada en reposo horizontalmente en una superficie sin rozamiento se aplica una fuerza F0 también horizontal. El punto de la aplicación se encuentra a una distancia c del centro de la barra.

  1. Si la fuerza es perpendicular a la barra, ¿cuánto valen la aceleración del CM y la aceleración angular de la barra? ¿Alrededor de qué punto comienza a girar la barra?
  2. Suponga ahora que la fuerza forma un ángulo β con la barra, ¿cuánto valen ese caso las aceleraciones y donde se encuentra el centro instantáneo de rotación?
  3. Suponga que la barra se encuentra articulada en un extremo de forma que sólo puede girar en torno a este punto. ¿Cuánto valen las aceleraciones en ese caso? ¿Cuánto vale la fuerza que el punto de articulación ejerce sobre la barra?
  4. Si la barra estuviera empotrada en su extremo, de forma que no pudiera moverse de ninguna manera, ¿cuánto valdrían la fuerza y el momento de reacción ejercidos por el soporte?

Solución

7 Equilibrio de una tabla

Se tiene una plataforma de masa m = 6.0\,\mathrm{kg} y longitud L = 2.00\,\mathrm{m} (estando la masa distribuida uniformemente) que se apoya horizontalmente sobre dos caballetes de forma que los puntos de apoyo A y B están a 60 cm y 20 cm del centro C de la tabla, respectivamente.

Archivo:mesa-caballetes.png
  1. Calcule la fuerza que cada caballete ejerce sobre la tabla.
  2. Halle el valor máximo de la masa que se puede apoyar en el borde izquierdo de la plataforma si no se quiere que esta vuelque.
  3. Suponga que sobre el extremo derecho de la plataforma se apoya una masa de 2.2 kg. ¿Volcará la tabla? Si es así, determine la aceleración angular que adquiere la tabla el comenzar a girar en torno al punto de apoyo, así como la fuerza que ejerce ese caballete sobre la mesa en el instante en que empieza a volcar.

Tómese g = 10\,\mathrm{m}/\mathrm{s}^2.

Dato: Momento de inercia de una barra de masa m y longitud b respecto a un eje perpendicular a ella y que pasa por su centro: I = mb2; / 12.

Solución

8 Barra apoyada en bloque

Una barra homogénea de 10 N de peso y 150 cm de longitud está articulada por uno de sus extremos, O. La barra está apoyada sin rozamiento sobre un bloque cuadrado homogéneo de h = 60cm de lado y 9.6 N de peso fijado al suelo, de manera que su borde está a b=80\,cm de O. Sea A el punto del bloque donde se apoya la barra.

  1. Determine la fuerza que se ejerce sobre la barra en O y en A.

Suponga ahora que el bloque no está soldado al suelo, sino solo apoyado en él, y es mantenido en su posición por la fuerza de rozamiento estático.

  1. Calcule la resultante de las fuerzas de reacción que el suelo ejerce sobre el bloque.
  2. Determine el valor mínimo del coeficiente de rozamiento μ para que el sistema se quede en equilibrio.
  3. Halle el momento resultante de las fuerzas de reacción del suelo sobre el bloque respecto a la esquina B de éste.

Solución

9 Péndulo compuesto

Se tiene un péndulo compuesto consistente en una barra de longitud b y masa M suspendida por un punto situado a una distancia d del centro de la barra (d < b / 2). Suponiendo que la barra se desvía un ángulo pequeño θ0 respecto de la vertical y a partir de ahí se suelta:

  1. Determine el periodo de oscilación de la barra
  2. Suponga ahora que la barra se sitúa horizontalmente y desde ahí se suelta. Para el instante en que pasa por la vertical, calcule:
    1. La velocidad angular de la barra y la velocidad lineal de los extremos de la barra.
    2. Calcule la fuerza ejercida sobre el punto de anclaje.
    3. Calcule la tensión en cada punto de la barra.

Solución

10 Rodadura por una pendiente

En lo alto de un plano inclinado de altura h y con una cierta pendiente se encuentran los siguientes objetos

  • Una superficie cilíndrica hueca
  • Un cilindro macizo
  • Una superficie esférica hueca
  • Una esfera maciza

Si se sueltan a la vez desde el extremo superior del plano, ¿dependerá el orden de llegada de la masa y el radio de cada uno? ¿con qué rapidez del CM llega cada uno al punto más bajo del plano? ¿en qué orden llegarán y cuanto tarda cada uno en llegar? Si además se suelta un bloque que desliza sin rozamiento por el plano, ¿llegará antes o después que los objetos rodantes? ¿Cuánto?

Solución

11 Bola que rueda por una pendiente

Una esfera metálica de acero con radio R=5\,\mathrm{cm}) se encuentra inicialmente en reposo a una altura z=15\,\mathrm{m} y desciende rodando sin deslizar por el plano inclinado con un ángulo \beta=30^\circ. El coeficiente de rozamiento estático entre el plano y el cilindro es μ. El rozamiento por rodadura es despreciable.

  1. ¿Qué relación existe entre la aceleración angular de la esfera y la lineal de su centro de masas?
  2. ¿Cuánto valen la energía cinética de rotación, la cinética de traslación, la potencial (tomando z = 0 como referencia) y la mecánica cuando se halla en z=5\,\mathrm{m}?
  3. ¿Cuánto vale, en módulo, la aceleración lineal del centro de masas de la esfera?
  4. ¿Cuál es el valor mínimo que debe tener el coeficiente de rozamiento μ si la esfera rueda sin deslizar?
Archivo:bola-rodante-pendiente.png

Dato: Momento de inercia de una esfera de masa M y radio R respecto a un eje que pasa por su centro: I = (2 / 5)MR2. Aceleración de la gravedad g = 9.8\,\mathrm{m}/\mathrm{s}^2. Densidad de masa del acero: \rho = 7850\,\mathrm{kg}/\mathrm{m}^3.

Solución

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace