Entrar Página Discusión Historial Go to the site toolbox

Cálculo de aceleración en una curva

De Laplace

Revisión a fecha de 23:29 20 oct 2017; Antonio (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

Contenido

1 Enunciado

Un coche entra en una curva de 90° y 100 m de radio a 80 km/h. Disminuye su rapidez uniformemente hasta salir de la curva a 50 km/h.

  1. Determine su rapidez cuando ha recorrido 1/3 de la curva, la mitad y 2/3 de ella.
  2. Halle su aceleración tangencial y su aceleración normal en los mismos puntos.
  3. Exprese el vector aceleración en estos puntos en los ejes indicados en la figura
Archivo:aceleracion-coche-curva.png

2 Rapidez

Como en el problema de la aceleración en una recta podría parecer que la rapidez varía linealmente con la posición y por tanto, a mitad de la curva la velocidad se habrá reducido en un 50% de la variación total. Sin embargo, no es así. Lo que es constante en este problema es la derivada respecto al tiempo, no la derivada respecto a la posición.

Se nos dice que

\frac{\mathrm{d}|\vec{v}|}{\mathrm{d}t}=a_t=\mathrm{cte.}

aunque no se nos dice cuánto vale esta cantidad, solo la velocidad en dos puntos conocidos (80 km/h a la entrada y 50 km/h a la salida).

El cálculo es análogo al caso rectilíneo, pero empleando la rapidez y la distancia recorrida en lugar de la velocidad y la posición. Tenemos por un lado que, al ser constante

a_t=\frac{\Delta |\vec{v}|}{\Delta t}=\frac{|\vec{v}|_2-|\vec{v}|_1}{\Delta t}

mientras que la rapidez media es la media de la rapidez inicial y la final

|\vec{v}|_m=\frac{\Delta s}{\Delta t}=\frac{|\vec{v}|_2+|\vec{v}|_1}{2}

Si multiplicamos estas dos ecuaciones

a_t \Delta s = \frac{|\vec{v}|^2_2-|\vec{v}|^2_1}{2}\qquad \Rightarrow\qquad a_t =\frac{|\vec{v}|^2_2-|\vec{v}|^2_1}{2\,\Delta s}

siendo la distancia recorrida

\Delta s = \frac{\pi}{2}R

A este resultado se puede llegar también despejando de las ecuaciones del movimiento uniformemente acelerado para el movimiento a lo largo de la carretera

s = s_0 + |\vec{v}|_0 t + \frac{1}{2}a_tt^2\qquad |\vec{v}|=|\vec{v}|_0+a_t t

El valor resultante de la aceleración tangencial es, pasando las velocidades a m/s,

a_t=\frac{13.9^2-22.2^2}{\pi\times 100}=-0.958\,\frac{\mathrm{m}}{\mathrm{s}^2}

Para los puntos intermedios aplicamos la relación correspondiente para un cierto ángulo θ

a_t=\frac{|\vec{v}|^2-|\vec{v}|_1^2}{2\theta R}\qquad\Rightarrow\qquad |\vec{v}|=\sqrt{|\vec{v}|_1^2+2a_tR \theta}=\sqrt{494-192\theta}


Aplicando esta fórmula a los valores indicados nos queda la tabla

θ |\vec{v}| (\mathrm{m}/\mathrm{s}) |\vec{v}| (\mathrm{km}/\mathrm{h})
0 22.2 80.0
π/6 19.8 71.4
π/4 18.5 66.7
π/3 17.1 61.6
π/2 13.9 50.0

 

Archivo:rapidez-curva-02.png        Archivo:rapidez-curva-01.png

3 Componentes intrínsecas de la aceleración

3.1 Aceleración tangencial

La aceleración tangencial, según indica el enunciado, es constante, y su expresión y valor ya lo hemos calculado en el apartado anterior

a_t = \frac{|\vec{v}_2|^2-|\vec{v}_1|^2}{\pi R}= -0.958\,\frac{\mathrm{m}}{\mathrm{s}^2}

3.2 Aceleración normal

La aceleración normal, en cada punto de la curva, tiene la expresión

a_n = \frac{|\vec{v}|^2}{R}

puesto que el radio de curvatura es constante y el cuadrado de la rapidez varía linealmente con la distancia, esta aceleración normal es también una función lineal del ángulo

a_n = \frac{|\vec{v}|_1^2+2a_tR\theta}{R}

Sustituyendo los valores del enunciado (pasados a metros por segundo) queda

a_n = \left(4.94-1.92\theta\right)\frac{\mathrm{m}}{\mathrm{s}^2}

Esto nos da la siguiente tabla de valores

θ at(m / s2) an(m / s2)
0 -0.958 4.94
π/6 -0.958 3.94
π/4 -0.958 3.43
π/3 -0.958 2.93
π/2 -0.958 1.93

4 Vector aceleración

Una vez que tenemos las componentes intrínsecas, construimos el vector aceleración como

\vec{a}=a_t\vec{T}+a_n\vec{N}

Aquí \vec{T} es el vector unitario tangente a la trayectoria, en la dirección y sentido de la velocidad. En función del ángulo θ este unitario es igual a

\vec{T}=-\mathrm{sen}(\theta)\vec{\imath}+\cos(\theta)\vec{\jmath}

mientras que el vector normal es el unitario hacia adentro de la circunferencia

\vec{N}=-\cos(\theta)\vec{\imath}-\mathrm{sen}(\theta)\vec{\jmath}

Combinando los dos términos nos queda el vector aceleración

\vec{a}=\left(-a_t\,\mathrm{sen}(\theta)-a_n\cos(\theta)\right)\vec{\imath}+\left(a_n\cos(\theta)-a_n\,\mathrm{sen}(\theta)\right)\vec{\jmath}

Sustituyendo los valores de los ángulos del enunciado

θ \vec{a} (\mathrm{m}/\mathrm{s}^2)
0 -4.94\vec{\imath}-0.96\vec{\jmath}
π/6 -2.93\vec{\imath}-2.80\vec{\jmath}
π/4 -1.75\vec{\imath}-3.11\vec{\jmath}
π/3 -0.64\vec{\imath}-3.02\vec{\jmath}
π/2 0.96\vec{\imath}-1.93\vec{\jmath}

 

Archivo:aceleracion-curva-02.png

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace