Entrar Página Discusión Historial Go to the site toolbox

Primera Convocatoria Ordinaria 2014/15 (G.I.A.)

De Laplace

Revisión a fecha de 16:51 28 ene 2015; Pedro (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

Partícula moviéndose sobre una hélice

Una partícula P de masa m está insertada en la hélice fija y uniforme Γ. Utilizando un sistema de referencia cartesiano OXYZ, en el cuál la gravedad está descrita analíticamente por el vector \vec{g}=-g\vec{k} , la ecuación parámetrica de dicha hélice es:


\Gamma:\vec{r}(\theta) = x(\theta)\,\vec{\imath} + y(\theta)\,\vec{\jmath} + z(\theta)\,\vec{k}
\left\{
\begin{array}{l}
x(\theta) = a\cos\theta\\
\\
y(\theta) = a\,\mathrm{sen}\,\theta\\
\\
z(\theta) = \lambda\,\theta
\end{array}
\right.

donde a y λ son constantes. EL parámetro geométrico θ es el ángulo que forma con el eje OX la proyección del radio-vector \vec{r}=\overrightarrow{OP} sobre el plano horizontal OXY. Cuando la partícula recorre la hélice Γ, sin rozamiento apreciable, su movimiento queda descrito por la ley horaria θ(t).

  1. Determine cuál debe ser el valor de la constante λ para que el radio de curvatura de la hélice sea Rκ = 3a / 2. ¿Qué distancia h asciende la partícula en la dirección vertical cada vez que da una vuelta completa alrededor del eje OZ.
  2. Obtenga la expresiones de las componentes intrínsecas de la velocidad y la aceleración en términos de la ley horaria θ(t) y/o sus derivadas.
  3. Discuta razonadamente si se verificará la conservación (total o parcial) del momento cinético \vec{L}_O de la partícula, calculado respecto del punto fijo O.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace