Entrar Página Discusión Historial Go to the site toolbox

Problemas de Movimiento relativo (MR G.I.C.)

De Laplace

(Diferencias entre revisiones)
Pedro (Discusión | contribuciones)
(Página creada con '=Problemas del boletín= == Giro de un triedro == right Los triedros <math>O_1X_1Y_1Z_1</math> y <math>OX_0Y_0Z_0</math…')
Edición más nueva →

Revisión de 18:23 30 sep 2015

Contenido

1 Problemas del boletín

1.1 Giro de un triedro

Los triedros O1X1Y1Z1 y OX0Y0Z0 están definidos de modo que sus orígenes y los ejes O1Z1 coinciden. El triedro "1" está en reposo y el triedro "0" gira respecto al "1" con velocidad angular uniforme \vec{\omega}_{01} = \omega\,\vec{k}_1 =\omega\,\vec{k}_0, de modo que el ángulo θ indicado en la figura es \theta = \omega\, t.

  1. Calcula las derivadas de los vectores de la base del triedro "0" vistos desde el triedro "1".
  2. Dado el vector \vec{A}(t) = a\,\vec{\imath}_0 calcula


\left.\dfrac{\mathrm{d}\vec{A}}{\mathrm{d}t}\right|_1 \qquad\qquad \left.\dfrac{\mathrm{d}\vec{A}}{\mathrm{d}t}\right|_0

  1. Expresa el resultado en los vectores de la base móvil (triedro "0") y la base fija (triedro "1").
  2. Haz el mismo cálculo para el vector \vec{B}(t) = b\,t\,\vec{\imath}_0

1.2 Coche sobre una plataforma circular

Una plataforma circular gira alrededor de un eje perpendicular a ella que pasa por su centro con velocidad angular uniforme ω. Un coche se mueve radialmente desde el centro de la plataforma hacia fuera con velocidad uniforme vc. Encuentra la expresión de la velocidad del coche visto desde la plataforma y desde un observador en reposo absoluto. Describe las trayectorias que describe el coche para cada uno de estos observadores.

Ayuda


\begin{array}{ccc}
          \displaystyle\int t\,\,\mathrm{sen}\,(\omega t)\mathrm{d} t = -\dfrac{t}{\omega}\cos(\omega t) + \dfrac{1}{\omega^2}\,\mathrm{sen}\,(\omega t)&
          \qquad
          &\displaystyle\int t\,\cos(\omega t)\mathrm{d} t = \dfrac{t}{\omega}\,\mathrm{sen}\,(\omega t) + \dfrac{1}{\omega^2}\cos(\omega t)
\end{array}

1.3 Disco engarzado en otro disco

En la figura se muestra un disco de radio R (sólido "2"), que gira con velocidad angular ω20(t) = ω, constante, alrededor del eje perpendicular a él, O1X0. Dicho eje está rígidamente unido a una plataforma (sólido "0"), que gira también con velocidad angular constante ω01(t) = Ω, alrededor del eje vertical O1Z1 de un sistema de referencia fijo O1X1Y1Z1 (sólido "1"). Determina las magnitudes cinemáticas \vec{v}^B_{21} y \vec{a}^B_{21} en el instante representado en la figura.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace