Entrar Página Discusión Historial Go to the site toolbox

Cálculo de divergencias y rotacionales

De Laplace

(Diferencias entre revisiones)
(Solución)
(Rotacional)
Línea 86: Línea 86:
y en esféricas
y en esféricas
-
\<center><math>\nabla\times\mathbf{A} = \frac{1}{r^2\mathrm{sen}\,\theta}\left|\begin{matrix}\mathbf{u}_{r} & r\mathbf{u}_{\theta} & r\,\mathrm{sen}\,\theta\mathbf{u}_{\varphi} \\ & & \\
+
<center><math>\nabla\times\mathbf{A} = \frac{1}{r^2\mathrm{sen}\,\theta}\left|\begin{matrix}\mathbf{u}_{r} & r\mathbf{u}_{\theta} & r\,\mathrm{sen}\,\theta\mathbf{u}_{\varphi} \\ & & \\
\displaystyle \frac{\partial \ }{\partial r} &\displaystyle\frac{\partial \ }{\partial \theta} & \displaystyle\frac{\partial \ }{\partial \varphi} \\ && \\ 0 & 0 & r^2\mathrm{sen}^2\theta\end{matrix}\right|=
\displaystyle \frac{\partial \ }{\partial r} &\displaystyle\frac{\partial \ }{\partial \theta} & \displaystyle\frac{\partial \ }{\partial \varphi} \\ && \\ 0 & 0 & r^2\mathrm{sen}^2\theta\end{matrix}\right|=
-
  2\cos\theta\mathbf{u}_{r}-2\sen\theta\mathbf{u}_{\theta}</math></center>
+
  2\cos\theta\mathbf{u}_{r}-2\,\mathrm{sen}\,\theta\mathbf{u}_{\theta}</math></center>
De nuevo el resultado es el mismo aunque, al estar expresado en base diferentes, parece formalmente distinto.
De nuevo el resultado es el mismo aunque, al estar expresado en base diferentes, parece formalmente distinto.

Revisión de 16:21 23 sep 2008

Contenido

1 Enunciado

Para los campos vectoriales

  1. \mathbf{A} = \mathbf{r}\,
  2. \mathbf{B}=-y\mathbf{u}_{x}+x\mathbf{u}_{y}\,
  3. \mathbf{C} = -x\mathbf{u}_{x}-y\mathbf{u}_{y}+2z\mathbf{u}_{z}\,
  4. \mathbf{D} = \rho^2\cos\varphi\,\mathbf{u}_{\rho}+\rho^2\,\mathrm{sen}\,\varphi\,\mathbf{u}_{\varphi}

calcule su divergencia y su rotacional, empleando en cada caso, coordenadas cartesianas, cilíndricas y esféricas. ¿Cuáles son irrotacionales y cuáles solenoidales?

2 Solución

2.1 Campo A

2.1.1 Divergencia

La divergencia, calculada en cartesianas, del vector de posición, es

\nabla{\cdot}\mathbf{A} = \frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z} = 3

Para este mismo campo, en cilíndricas, sustituyendo la expresión de \mathbf{r} dada en otro problema

\nabla{\cdot}\mathbf{A} = \frac{1}{\rho}\frac{\partial \rho^2}{\partial \rho}+\frac{\partial z}{\partial z} =
\frac{2\rho}{\rho}+1 = 3

y, en esféricas,

\nabla{\cdot}\mathbf{A} = \frac{1}{r^2}\frac{\partial (r^3)}{\partial r}= 3

2.1.2 Rotacional

Para el rotacional de este mismo campo, empleando coordenadas cartesianas

\nabla\times\mathbf{A} = \left|\begin{matrix}
\mathbf{u}_{x} & \mathbf{u}_{y} & \mathbf{u}_{z} \\ & & \\
\displaystyle\frac{\partial \ }{\partial x} & \displaystyle\frac{\partial \ }{\partial y} & \displaystyle\frac{\partial \ }{\partial z} \\ && \\ x & y & z
\end{matrix}\right| =  0\mathbf{u}_{x}+0\mathbf{u}_{y}+0\mathbf{u}_{z}=\mathbf{0}

en cilíndricas

\nabla\times\mathbf{A} = \frac{1}{\rho}\left|\begin{matrix}\mathbf{u}_{\rho} & \rho\mathbf{u}_{\varphi} & \mathbf{u}_{z} \\ & & \\
\displaystyle\frac{\partial \ }{\partial \rho} &\displaystyle\frac{\partial \ }{\partial \varphi} & \displaystyle\frac{\partial \ }{\partial z} \\ && \\ \rho & 0 & z\end{matrix}\right|= \mathbf{0}

y en esféricas

\nabla\times\mathbf{A} = \frac{1}{r^2\mathrm{sen}\,\theta}\left|\begin{matrix}\mathbf{u}_{r} & r\mathbf{u}_{\theta} & r\,\mathrm{sen}\,\theta\mathbf{u}_{\varphi} \\ & & \\
\displaystyle \frac{\partial \ }{\partial r} &\displaystyle\frac{\partial \ }{\partial \theta} & \displaystyle\frac{\partial \ }{\partial \varphi} \\ && \\ r & 0 & 0\end{matrix}\right| = 
 \mathbf{0}

Naturalmente los resultados son los mismos independientemente del sistema empleado para calcularlos.

2.2 Campo B

2.2.1 Divergencia

Para el segundo campo, su divergencia, calculada en cartesianas,

\nabla{\cdot}\mathbf{B} = \frac{\partial (-y)}{\partial x}+\frac{\partial x}{\partial y}+\frac{\partial 0}{\partial z}=0

En cilíndricas este campo se escribe

\mathbf{B} = -\rho\,\mathrm{sen}\varphi\mathbf{u}_{x}+\rho\cos\varphi\mathbf{u}_{y}=\rho\mathbf{u}_{\varphi}

y la divergencia

\nabla{\cdot}\mathbf{B} = 0+ \frac{1}{\rho}\frac{\partial \rho}{\partial \varphi}+0 = 0

En esféricas el campo es

\mathbf{B} = r \,\mathrm{sen}\,\theta\mathbf{u}_{\varphi}

y la divergencia

\nabla{\cdot}\mathbf{B} = 0+0+\frac{1}{r\,\mathrm{sen}\,\theta}\frac{\partial \left(r\,\mathrm{sen}\,\theta\right)}{\partial \varphi} = 0

2.2.2 Rotacional

Para el rotacional, en cartesianas,

\nabla\times\mathbf{B} = \left|\begin{matrix}
\mathbf{u}_{x} & \mathbf{u}_{y} & \mathbf{u}_{z} \\ & & \\
\displaystyle\frac{\partial \ }{\partial x} & \displaystyle\frac{\partial \ }{\partial y} & \displaystyle\frac{\partial \ }{\partial z} \\ && \\ -y & x & 0\end{matrix}\right|=
 0\mathbf{u}_{x}+0\mathbf{u}_{y}+2\mathbf{u}_{z}=2\mathbf{u}_{z}

En cilíndricas

\nabla\times\mathbf{B} = \frac{1}{\rho}\left|\begin{matrix}\mathbf{u}_{\rho} & \rho\mathbf{u}_{\varphi} & \mathbf{u}_{z} \\ & & \\
\displaystyle\frac{\partial \ }{\partial \rho} &\displaystyle\frac{\partial \ }{\partial \varphi} & \displaystyle\frac{\partial \ }{\partial z} \\ && \\ 0 & \rho^2 & 0\end{matrix}\right|=
 2\mathbf{u}_{z}

y en esféricas

\nabla\times\mathbf{A} = \frac{1}{r^2\mathrm{sen}\,\theta}\left|\begin{matrix}\mathbf{u}_{r} & r\mathbf{u}_{\theta} & r\,\mathrm{sen}\,\theta\mathbf{u}_{\varphi} \\ & & \\
\displaystyle \frac{\partial \ }{\partial r} &\displaystyle\frac{\partial \ }{\partial \theta} & \displaystyle\frac{\partial \ }{\partial \varphi} \\ && \\ 0 & 0 & r^2\mathrm{sen}^2\theta\end{matrix}\right|=
 2\cos\theta\mathbf{u}_{r}-2\,\mathrm{sen}\,\theta\mathbf{u}_{\theta}

De nuevo el resultado es el mismo aunque, al estar expresado en base diferentes, parece formalmente distinto.

2.3 Campo C

2.3.1 Divergencia

2.3.2 Rotacional

2.4 Campo D

2.4.1 Divergencia

2.4.2 Rotacional

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace