Entrar Página Discusión Historial Go to the site toolbox

Problemas de inducción electromagnética (GIA)

De Laplace

(Diferencias entre revisiones)
(Tensión inducida en una espira abierta)
(Coeficientes de inducción en sistema de dos bobinas)
Línea 39: Línea 39:
 
 
 +
 +
 +
==[[Inducción_en_barra_y_escuadra,_F2_GIA_(Jun,_2013)|Inducción en barra y escuadra conductoras]]==
 +
[[Archivo:induc_barra_escuadra_0.gif|right]]Dos conductores rectilíneos filiformes de resistencia despreciable, están contenidos en el plano <math>OXY</math>, conectados en ángulo recto en el punto <math>O</math>, y de manera que el eje <math>OX</math> coincide con la bisectriz del ángulo recto que forman los hilos conductores. Un barra de aluminio, de sección <math>S</math> y longitud <math>a</math>, se mueve manteniéndose siempre perpendicular al eje <math>OX</math>, y en contacto con los conductores filiformes. El movimiento de la barra es tal que partiendo del punto <math>O</math>, su centro <math>C</math> se desplaza con velocidad constante <math>v_0</math> en el sentido positivo del eje. Todo el sistema está sometido a un campo magnético uniforme y constante, <math>\mathbf{B}_0=B_0\!\ \mathbf{k}</math>.
 +
 +
# Obtenga la expresión que describe cómo varía en el tiempo el flujo magnético a través de la espira <math>\partial\Sigma</math> formada por los conductores filiformes y la barra (considérese despreciable la autoinducción de la espira). Obtenga también la fuerza electromotriz inducida en dicho circuito.
 +
# Determine la expresión de la intensidad de corriente eléctrica inducida, indicando el sentido en que recorre la espira. Asimismo, obtenga las expresiones de la potencia disipada por efecto Joule en la barra, y del calor total generado desde que ésta empieza a moverse hasta que pierde el contacto con los conductores filiformes.
 +
# Obtenga la fuerza magnética (magnitud vectorial) que actúa sobre la corriente en la barra móvil, en función de su posición.
 +
# Sabiendo que la conductividad del aluminio es <math>\sigma_{{}_\mathrm{Al}}=37.7\times10^{6}\,\mathrm{S}/\mathrm{m}</math>, calcule el valor de la intensidad de corriente, el calor generado por efecto Joule en la barra y el valor máximo de la fuerza magnética que actúa sobre ella, para el caso: <math>B_0=0.1\,\mathrm{T}</math>; <math>v_0=1\,\mathrm{cm}/\mathrm{s}</math>; <math>S=79.6\,\mathrm{mm}^2</math>; <math>a=1\,\mathrm{m}</math>.
==[[Circuito_variable_en_plano_inclinado_(F2GIA)|Circuito variable en un plano inclinado, sometido a campo magnético]]==
==[[Circuito_variable_en_plano_inclinado_(F2GIA)|Circuito variable en un plano inclinado, sometido a campo magnético]]==

Revisión de 22:35 8 may 2014

Contenido

1 Ley de Lenz en espira con barra móvil

Una espira conductora rectangular fija se halla inmersa en un campo magnético uniforme y constante de magnitud B0, y dirección perpendicular al plano de la espira. Un barra conductora se desplaza con velocidad uniforme v0, manteniendo sus extremos en contacto con sendos lados paralelos de la espira. Indique los sentidos con que las corrientes eléctricas inducidas recorren cada una de mallas en que queda dividida la espira

 

 

2 Intensidad de corriente en lector magnético

Para implementar un lector de cinta magnética se utiliza una espira cuadrada conductora. Ésta se halla conectada a un amperímetro que mide la intensidad inducida cuando bajo ella pasa una cinta en la cuál hay una secuencia de regiones magnetizadas y no magnetizadas. Aquéllas producen un campo magnético \mathbf{B}, que puede considerarse localizado en dichas regiones y prácticamente uniforme en las proximidades de la cinta, siendo su dirección perpendicular al plano de la espira lectora. El amperímetro está conectado de manera que mide valores positivos de intensidad cuando la corriente inducida recorre la espira lectora en sentido antihorario, teniendo ésta un tamaño algo menor que las secciones magnetizadas. Si la cinta se desplaza con velocidad constante \mathbf{v}_0 respecto de la espira lectora fija, cómo es la corriente inducida en la espira cuando bajo ella pasa una sección magnetizada en sentido negativo (ver figura).

Archivo:lector_magnet_1.gif


3 Espira cuadrada en el interior de un solenoide

Un solenoide constituido por N espiras compactas paralelas, con forma de cilindro recto de longitud h mucho mayor que su radio b, es recorrido por una corriente eléctrica de intensidad variable en el tiempo según la ley I(t) = I0cos(ωt), siendo I0 y ω constantes conocidas. En el interior del solenoide hay una pequeña espira cuadrada de resistencia eléctrica R, autoinducción despreciable y lado a, menor que el radio b. Esta espira esté contenida en un plano perpendicular a las espiras del solenoide. ¿Cuál es el valor de la intensidad de corriente Ie que recorre la espira cuadrada?

 

 

4 Tensión inducida en una espira abierta

Un solenoide recto de forma cilíndrica y longitud l, mucho mayor que su radio, está formado por N espiras distribuidas de forma compacta que son recorridas en sentido horario por una corriente eléctrica que crece linealmente según la ley I(t)=C\!\ t (C, constante). En un plano paralelo a las espiras del solenoide y en el interior de éste, se encuentra una pequeña espira circular de radio a, menor que el del solenoide. Si a la espira le falta un pequeño trozo, de manera que constituye un circuito abierto, ¿cómo es la tensión V = VAVB que mediría un voltímetro conectado a sus extremos, tal como se indica en la figura?

 

 

5 Voltaje inducido en espira alrededor de un solenoide

Un solenoide de longitud h=30\,\mathrm{cm} y diámetro 2a=1\,\mathrm{cm}, está formado por N = 600 espiras paralelas, que se enrollan de manera compacta sobre la superficie de un cilindro de hierro cuya permeabilidad relativa es K_m\approx 5000. Una anilla conductora filiforme rodea al solenoide, estando contenida en un plano perpendicular al eje del mismo y lejos de sus extremos. A la anilla le falta un pequeño trozo, de manera que constituye un circuito abierto. Si por el conductor del solenoide se hace pasar una corriente cuya intensidad crece linealmente según la ley I(t) = Ct, con C=10\,\mathrm{mA/s}. ¿Qué tensión se medirá entre los extremos abiertos de la anilla?


6 Coeficientes de inducción en sistema de dos bobinas

Se tienen dos bobinas o solenoides, ambas de igual longitud h, pero de distinta sección: la bobina “1” tiene forma de cilindro recto, estando formada por N1 espiras circulares de radio a. Por su parte, la bobina “2” tiene forma de prisma recto de sección cuadrada y la constituyen N2 espiras cuadradas iguales, cuya diagonal mide 2a. En ambas bobinas los hilos conductores están enrollados en el mismo sentido, y de manera que las espiras se distribuyen de forma compacta en planos perpendiculares a su correspondiente eje. Asumiendo que se verifica la condición de bobinas largas (h\gg 2a), ¿cuáles son los coeficientes de autoinducción y de inducción mutua del sistema cuando la bobina “2” se coloca por completo en el interior de la “1”?

 

 


7 Inducción en barra y escuadra conductoras

Dos conductores rectilíneos filiformes de resistencia despreciable, están contenidos en el plano OXY, conectados en ángulo recto en el punto O, y de manera que el eje OX coincide con la bisectriz del ángulo recto que forman los hilos conductores. Un barra de aluminio, de sección S y longitud a, se mueve manteniéndose siempre perpendicular al eje OX, y en contacto con los conductores filiformes. El movimiento de la barra es tal que partiendo del punto O, su centro C se desplaza con velocidad constante v0 en el sentido positivo del eje. Todo el sistema está sometido a un campo magnético uniforme y constante, \mathbf{B}_0=B_0\!\ \mathbf{k}.
  1. Obtenga la expresión que describe cómo varía en el tiempo el flujo magnético a través de la espira \partial\Sigma formada por los conductores filiformes y la barra (considérese despreciable la autoinducción de la espira). Obtenga también la fuerza electromotriz inducida en dicho circuito.
  2. Determine la expresión de la intensidad de corriente eléctrica inducida, indicando el sentido en que recorre la espira. Asimismo, obtenga las expresiones de la potencia disipada por efecto Joule en la barra, y del calor total generado desde que ésta empieza a moverse hasta que pierde el contacto con los conductores filiformes.
  3. Obtenga la fuerza magnética (magnitud vectorial) que actúa sobre la corriente en la barra móvil, en función de su posición.
  4. Sabiendo que la conductividad del aluminio es \sigma_{{}_\mathrm{Al}}=37.7\times10^{6}\,\mathrm{S}/\mathrm{m}, calcule el valor de la intensidad de corriente, el calor generado por efecto Joule en la barra y el valor máximo de la fuerza magnética que actúa sobre ella, para el caso: B_0=0.1\,\mathrm{T}; v_0=1\,\mathrm{cm}/\mathrm{s}; S=79.6\,\mathrm{mm}^2; a=1\,\mathrm{m}.

8 Circuito variable en un plano inclinado, sometido a campo magnético

Una varilla conductora de masa m=2.0\,\mathrm{kg}\, se deja caer deslizando sin rozamiento por dos guías metálicas paralelas separadas una distancia l=5.0\,\mathrm{m}\, contenidas en un plano inclinado que forma un ángulo α = 10o con la horizontal. La dirección de la varilla es, en todo instante, perpendicular a las guías, las cuáles tienen conectados sus extremos mediante un cable de resistencia eléctrica R=10\,\Omega, que cierra el circuito. Las resistencias eléctricas de la varilla y las guías son despreciables. El sistema descrito se halla inmerso en un campo magnético uniforme y constante, \mathbf{B}_0, de 0.5\,\mathrm{T}\, de intensidad, aplicado en dirección vertical y sentido contrario a la gravedad. Calcule:
  1. Corriente inducida en el circuito y velocidad límite que alcanzará la varilla.
  2. Potencia disipada por efecto Joule en la resistencia. Compare esta potencia con el trabajo que por unidad de tiempo realiza la fuerza peso sobre la varilla.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace