Entrar Página Discusión Historial Go to the site toolbox

Problemas de campos eléctricos y magnéticos

De Laplace

(Diferencias entre revisiones)
(Nueva página: ==Número de cargas eléctricas en un metal== Se tiene un cubo de cobre de 1 cm de arista. Estime el número de atomos de cobre que hay en ese cubo. Si cada átomo de cobre cede d...)
 
(7 ediciones intermedias no se muestran.)
Línea 1: Línea 1:
==[[Número de cargas eléctricas en un metal]]==
==[[Número de cargas eléctricas en un metal]]==
-
Se tiene un cubo de cobre de 1 cm de arista. Estime el número de atomos de cobre que hay en ese cubo. Si cada átomo de cobre cede dos electrones a la banda de conducción, estime el número de cargas eléctricas libres que hay en el cubo.
+
Se tiene un cubo de cobre de 1 cm de arista. Estime el número de átomos de cobre que hay en ese cubo. Si cada átomo de cobre cede dos electrones a la banda de conducción, estime el número de cargas eléctricas libres que hay en el cubo.
'''Datos:''' <math>\rho_m</math> (cobre)=8.96 g/cm<sup>3</sup>, <math>P_m</math> (cobre)=63.54 g/mol.
'''Datos:''' <math>\rho_m</math> (cobre)=8.96 g/cm<sup>3</sup>, <math>P_m</math> (cobre)=63.54 g/mol.
[[Número de cargas eléctricas en un metal|'''Solución''']]
[[Número de cargas eléctricas en un metal|'''Solución''']]
 +
 +
==[[Ejemplos de densidades de carga]]==
 +
Calcule la carga eléctrica total en cada uno de estos sistemas
 +
#Un hilo de longitud <math>L</math> con densidad lineal de carga uniforme <math>\lambda_0</math>.
 +
#Un hilo de longitud <math>L</math> con densidad lineal de carga <math>\lambda(x)=Ax</math> (<math> x=0 </math> corresponde al punto medio).
 +
#Un hilo circular de radio <math> R</math> con densidad lineal de carga uniforme <math>\lambda_0</math>.
 +
#Un disco de radio <math> R</math> con densidad superficial de carga uniforme <math>\sigma_0</math>.
 +
#Una esfera de radio <math> R</math> con densidad volumétrica de carga uniforme <math>\rho_0</math>.
 +
 +
 +
[[Ejemplos de densidades de carga|'''Solución''']]
 +
 +
== [[Funcionamiento de un electroscopio elemental]] ==
 +
Un electroscopio mide la carga por la desviación angular de dos esferas idénticas conductoras, suspendidas
 +
por cuerdas aislantes de masas despreciables y longitud
 +
<math>L</math>. Cada esfera tiene una masa <math>m</math> y está
 +
sometida a la gravedad <math>g</math>. Las cargas pueden considerarse
 +
como puntuales e iguales entre sí. Halle la ecuación que liga el
 +
semi ángulo <math>\theta</math> con el valor de la carga total <math>Q</math> depositada en las esferas.
 +
 +
Suponga que la masa de cada esfera es <math>m = 10^{-4} </math> kg y
 +
la longitud del cable del que penden es 20 cm. Admita asimismo que los
 +
ángulos de desviación pueden medirse como mucho con una precisión de
 +
1&deg;. ¿Cuál es la carga mínima que puede medirse con este aparato? ¿Y la carga máxima?
 +
 +
[[Funcionamiento de un electroscopio elemental|'''Solución''']]
 +
 +
==[[Fuerzas sobre cargas puntuales en un triángulo equilátero]]==
 +
 +
Se tiene un triángulo equilátero de lado d = 1 cm. En cada uno de sus vértices hay una carga puntual. Determine la fuerza sobre cada carga cuando
 +
#q1 = q2 = q3 = 1 μC.
 +
#q1 = q2 = q3 = −1 μC.
 +
#q1 = q2 = 1 μC, q3 = −1 μC.
 +
#q1 = q2 = 1 μC, q3 = −2 μC.

última version al 12:32 29 may 2009

Contenido

1 Número de cargas eléctricas en un metal

Se tiene un cubo de cobre de 1 cm de arista. Estime el número de átomos de cobre que hay en ese cubo. Si cada átomo de cobre cede dos electrones a la banda de conducción, estime el número de cargas eléctricas libres que hay en el cubo.

Datos: ρm (cobre)=8.96 g/cm3, Pm (cobre)=63.54 g/mol.

Solución

2 Ejemplos de densidades de carga

Calcule la carga eléctrica total en cada uno de estos sistemas

  1. Un hilo de longitud L con densidad lineal de carga uniforme λ0.
  2. Un hilo de longitud L con densidad lineal de carga λ(x) = Ax (x = 0 corresponde al punto medio).
  3. Un hilo circular de radio R con densidad lineal de carga uniforme λ0.
  4. Un disco de radio R con densidad superficial de carga uniforme σ0.
  5. Una esfera de radio R con densidad volumétrica de carga uniforme ρ0.


Solución

3 Funcionamiento de un electroscopio elemental

Un electroscopio mide la carga por la desviación angular de dos esferas idénticas conductoras, suspendidas por cuerdas aislantes de masas despreciables y longitud L. Cada esfera tiene una masa m y está sometida a la gravedad g. Las cargas pueden considerarse como puntuales e iguales entre sí. Halle la ecuación que liga el semi ángulo θ con el valor de la carga total Q depositada en las esferas.

Suponga que la masa de cada esfera es m = 10 − 4 kg y la longitud del cable del que penden es 20 cm. Admita asimismo que los ángulos de desviación pueden medirse como mucho con una precisión de 1°. ¿Cuál es la carga mínima que puede medirse con este aparato? ¿Y la carga máxima?

Solución

4 Fuerzas sobre cargas puntuales en un triángulo equilátero

Se tiene un triángulo equilátero de lado d = 1 cm. En cada uno de sus vértices hay una carga puntual. Determine la fuerza sobre cada carga cuando

  1. q1 = q2 = q3 = 1 μC.
  2. q1 = q2 = q3 = −1 μC.
  3. q1 = q2 = 1 μC, q3 = −1 μC.
  4. q1 = q2 = 1 μC, q3 = −2 μC.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 12:32, 29 may 2009. - Esta página ha sido visitada 3.647 veces. - Aviso legal - Acerca de Laplace