Entrar Página Discusión Historial Go to the site toolbox

Problemas de herramientas matemáticas (GIE)

De Laplace

(Diferencias entre revisiones)
(Teoremas del seno y del coseno)
(Teoremas del seno y del coseno)
Línea 16: Línea 16:
Con ayuda de productos escalares y vectoriales demuestre los teoremas del coseno
Con ayuda de productos escalares y vectoriales demuestre los teoremas del coseno
-
<center><math>c^2 = a^2 + b^2 -2ab\,\mathrm{cos}(\gamma)</math></center>
+
<center><math>c^2 = a^2 + b^2 -2ab\,\mathrm{cos}(C)</math></center>
y del seno  
y del seno  
-
<center><math>\frac{\mathrm{sen}\,\alpha}{a}=\frac{\mathrm{sen}\,\beta}{b}=\frac{\mathrm{sen}\,\gamma}{c}</math></center>
+
<center><math>\frac{\mathrm{sen}\,A}{a}=\frac{\mathrm{sen}\,B}{b}=\frac{\mathrm{sen}\,C}{c}</math></center>
en un triángulo de lados <math>a</math>, <math>b</math> y <math>c</math>, y ángulos opuestos <math>A</math>, <math>B</math> y <math>C</math>.
en un triángulo de lados <math>a</math>, <math>b</math> y <math>c</math>, y ángulos opuestos <math>A</math>, <math>B</math> y <math>C</math>.

Revisión de 09:45 1 oct 2015

Contenido

1 Problemas de boletín

1.1 Arco capaz

Sean A y B dos puntos diametralmente opuestos en una circunferencia c. Sea P otro punto de la misma circunferencia. Demuestre que los vectores \overrightarrow{AP} y \overrightarrow{BP} son ortogonales.

Inversamente, sean A, B y P tres puntos tales que \overrightarrow{AP} \perp \overrightarrow{BP}. Pruebe que el centro de la circunferencia que pasa por A, B y P se encuentra en el punto medio del segmento AB.

1.2 Coseno y seno de una diferencia

A partir del producto escalar y del vectorial de dos vectores del plano, con módulo unidad, demuestre las fórmulas trigonométricas para el coseno y el seno de una diferencia de dos ángulos.

Archivo:diferencia-angulos.png

1.3 Teoremas del seno y del coseno

Con ayuda de productos escalares y vectoriales demuestre los teoremas del coseno

c^2 = a^2 + b^2 -2ab\,\mathrm{cos}(C)

y del seno

\frac{\mathrm{sen}\,A}{a}=\frac{\mathrm{sen}\,B}{b}=\frac{\mathrm{sen}\,C}{c}

en un triángulo de lados a, b y c, y ángulos opuestos A, B y C.

1.4 Construcción de una base

Dados los vectores

\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}\qquad\qquad\vec{a}=6\vec{\imath}+9\vec{\jmath}+6\vec{k}

Construya una base ortonormal dextrógira \{\vec{T},\vec{N},\vec{B}\}, tal que

  1. El primer vector, \vec{T}, vaya en la dirección y sentido de \vec{v}
  2. El segundo, \vec{N}, esté contenido en el plano definido por \vec{v} y \vec{a} y apunte hacia el mismo semiplano (respecto de \vec{v}) que el vector \vec{a}.
  3. El tercero, \vec{B}, sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.

1.5 Ejemplo de operaciones con dos vectores

Dados los vectores

\vec{v}=2.0\vec{\imath}+3.5\vec{\jmath}-4.2\vec{k}\qquad\qquad\vec{a}=4.5\vec{\imath}-2.2\vec{\jmath}+1.5\vec{k}
  1. ¿Qué ángulo forman estos dos vectores?
  2. ¿Qué área tiene el paralelogramo que tiene a estos dos vectores por lados?
  3. Escriba \vec{a} como suma de dos vectores, uno paralelo a \vec{v} y otro ortogonal a él.

1.6 Formulas vectoriales potencialmente incorrectas

De las siguientes expresiones, indique cuáles son necesariamente incorrectas. Aquí las diferentes letras representan las magnitudes definidas en el problema de ejemplos de cálculo de dimensiones, R es una distancia y \vec{r} el vector de posición; t es el tiempo:

(a) \vec{F} = m\frac{\vec{v}\times\vec{a}}{\vec{v}}
(b) \vec{F}\times(\vec{v}\times\vec{a}) = (\vec{p}\cdot\vec{a})\times\vec{a}
(c) \frac{\vec{L}}{R} = \vec{F}t-\vec{v}
(d) (\vec{r}\times\vec{p})\vec{L} = R(\vec{r}\cdot\vec{p})\vec{p}
(e) \frac{\vec{F}-\vec{p}/t}{m} =  \frac{\vec{r}-\vec{v}t}{t^2-t}
(f) \frac{1}{\vec{r}} = \frac{\vec{r}}{r^2}
(g) L  = \vec{r}\times\vec{p}
(h) \frac{W}{t} = \vec{F}\times\left(\vec{v}-\frac{R}{t}\right)

1.7 Determinación de un vector a partir de sus proyecciones

Se tiene un vector conocido, no nulo, \vec{A} y uno que se desea determinar, \vec{X}. Se dan como datos su producto escalar y su producto vectorial por \vec{A}

\vec{A}\cdot\vec{X}=k\qquad \vec{A}\times\vec{X} = \vec{C}

Determine el valor de \vec{X}. ¿Es suficiente una sola de las dos ecuaciones para hallar \vec{X}?

1.8 Cálculo de las componentes de un vector

De una fuerza \vec{F}_1 se sabe que tiene de intensidad 10 N y que los ángulos que forma con los semiejes OX y OY positivos valen 60°. Determine las componentes cartesianas de esta fuerza. ¿Existe solución? ¿Es única?

Si a esta fuerza se le suma otra \vec{F}_2 = (-10\vec{\imath}-10\vec{\jmath})\,\mathrm{N}, ¿qué ángulo forma la resultante con los ejes coordenados?

1.9 Fuerza debida a un globo aerostático

Un globo aerostático está atado al suelo por una cuerda de 50 m y ejerce una fuerza de 2000 N sobre esta cuerda (en la dirección de esta y tirando de ella). El globo se halla a una altura de 30 m y se halla empujado por un fuerte viento del noroeste. Exprese el vector fuerza en la base canónica, si el eje X apunta en la dirección este y el eje Y en la dirección norte.

1.10 Base vectorial girada

Considere la terna de vectores

\vec{u}_1 =
\cos(\theta)\vec{\imath}+\mathrm{sen}(\theta)\vec{\jmath} \qquad
\vec{u}_2 =
-\mathrm{sen}(\theta)\vec{\imath}+\cos(\theta)\vec{\jmath} \qquad
\vec{u}_3 = \vec{k}
  1. Pruebe que constituyen una base ortonormal dextrógira. ¿Cómo están situados estos vectores?
  2. Halle la transformación inversa, es decir, exprese \{\vec{\imath},\vec{\jmath},\vec{k}\} como combinación de \{\vec{u}_1,\vec{u}_2,\vec{u}_3\}.
  3. Para el caso particular en que tg(θ) = 3 / 4, particularice las ecuaciones de transformación y exprese el vector \vec{F}=10\vec{\imath}-15\vec{\jmath}+3\vec{k} en la nueva base.

2 Preguntas de test

2.1 Suma de vectores ligados

Dados los vectores ligados de la figura,

Archivo:suma-ligados-0.png

¿cuánto vale su suma vectorial?

Archivo:suma-ligados-1.png Archivo:suma-ligados-2.png
A B
Archivo:suma-ligados-3.png Archivo:suma-ligados-4.png
C D

2.2 Ángulo entre dos vectores

¿Qué ángulo forman los vectores \vec{A}=24\vec{\imath}-32\vec{k} y \vec{B}=16\vec{\jmath}+12\vec{k}?

  • A 0.00 rad
  • B 1.07 rad
  • C 1.57 rad
  • D 2.07 rad

2.3 Posible igualdad vectorial

Si \vec{A} y \vec{B} son dos vectores unitarios, indique cuándo se cumple la igualdad

\vec{A}\cdot\vec{B} = \vec{A}\times\vec{B}
  • A Cuando \vec{A} y \vec{B} son paralelos.
  • B Cuando \vec{A} y \vec{B} son ortogonales.
  • C No se cumple nunca.
  • D Cuando \vec{A} y \vec{B} forman un ángulo de 45°.

2.4 Otra posible igualdad vectorial

Sean \vec{A}, \vec{B} y \vec{C} vectores arbitrarios no nulos. ¿Cuál de las siguientes afirmaciones es cierta siempre?

  • A \vec{A}\cdot\vec{B} = \vec{B}\cdot\vec{A}
  • B (\vec{A}\cdot\vec{B})\vec{C} = \vec{A}(\vec{B}\cdot\vec{C})
  • C \vec{A}\times\vec{B} = \vec{B}\times\vec{A}
  • D (\vec{A}\times\vec{B})\times\vec{C} = \vec{A}\times(\vec{B}\times\vec{C})

2.5 Área de un triángulo

Dados tres puntos del espacio A, B y C, siendo O el origen de coordenadas, ¿cómo podemos hallar el área del triángulo que definen?

  • A \overrightarrow{AB}\cdot\overrightarrow{AC}
  • B (\overrightarrow{AB}\cdot\overrightarrow{AC})/2
  • C |\overrightarrow{AB}\times\overrightarrow{AC}|/2
  • D \overrightarrow{OB}\cdot(\overrightarrow{OB}\times\overrightarrow{OC})

2.6 Comprobación de identidades

¿Cuál de las siguientes afirmaciones no es necesariamente incorrecta? Los símbolos son los usuales en cinemática

  • A \vec{r}=(\vec{v}-\vec{a}t)/|\vec{a}-\vec{v}t|
  • B \Delta t=(\Delta \vec{r})/\vec{v}
  • C R=|\vec{v}|^3/|\vec{v}\times\vec{a}|
  • D \vec{r}\cdot(\vec{a}\cdot\vec{v})= (\vec{v}\cdot\vec{v})\cdot\vec{v}

2.7 Ángulo entre dos diagonales

Se tienen dos vectores a lo largo de las diagonales de las caras de un cubo, con el mismo punto de aplicación. ¿Qué ángulo forman?

  • A π/4
  • B π/6
  • C π/2
  • D π/3

2.8 Ecuaciones con vectores

Dados dos vectores arbitrarios \vec{a} y \vec{b}, ¿cuál de las siguientes afirmaciones es cierta, en general?

  • A |\vec{a}||\vec{b}| = |\vec{a}\cdot\vec{b}|+|\vec{a}\times\vec{b}|
  • B (\vec{a}\times\vec{b})\times\vec{a}=\vec{0}
  • C (\vec{a}\times\vec{b})\cdot\vec{a}=0
  • D (\vec{a}\cdot\vec{b})\vec{a}=|\vec{a}|^2\vec{b}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace