Campo producido por una espira poligonal
De Laplace
Contenido |
1 Enunciado
Por las espira de formas irregulares de las figuras circula una corriente I. Halle el valor del campo en el punto P en cada caso.
Para cada una de las espiras, hállese su momento magnético y la expresión del campo magnético y del potencial vector en puntos alejados de la espira.
2 Cuadrilátero
2.1 Campo en P
El campo es la suma de las contribuciones de cada uno de los lados del cuadrilátero. El campo de un segmento puede calcularse por integración directa, resultando la expresión
donde α1 y α2 son los ángulos con que se ven los extremos del segmento desde P, ρ es la distancia de P a la recta soporte del segmento y la normal al plano definido por el segmento y P, orientado según la regla de la mano derecha.
El punto P se encuentra en la intersección de la prolongación de dos de los lados. Por estar fuera de estos segmentos, la contribución de esos dos lados es nula.Quedan las contribuciones de los otros dos lados.
Para el lado situado a una distancia a tenemos que
es el vector perpendicular al plano de la espira, hacia adentro de la pantalla. La contribución de esta lado es
Para el lado situado a una distancia b tenemos que
La contribución de esta lado es
y el campo en P
Puesto que a < b, este campo va hacia adentro de la pantalla.
2.2 Momento magnético
El momento magnético de una espira plana es
Siendo S el área de la porción de plano limitada por la curva y n la normal a éste (con el sentido asignado por la regla de la mano derecha.
El área de esta figura es la de un triángulo rectángulo menos la de otro triángulo rectángulo semejante
con h y h' las longitudes de los lados 2 y 4. Por trigonomtría
y
El campo en puntos alejados el potencial vector es el de un dipolo
El campo correspondiente es