Entrar Página Discusión Historial Go to the site toolbox

Problemas de energía y leyes de conservación (GIOI)

De Laplace

Revisión a fecha de 20:30 2 ene 2006; Antonio (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

Contenido

1 Conservación en un movimiento rectilíneo y uniforme

Una partícula de masa m describe el movimiento rectilíneo y uniforme

\vec{r}=\vec{r}_0+\vec{v}_0t

Demuestre que su cantidad de movimiento, su momento cinético respecto al origen de coordenadas y su energía cinética permanecen constantes. Halle el valor de estas tres cantidades.

Solución

2 Leyes de conservación en polares y cilíndricas

Una partícula de masa m describe el movimiento expresado en cilíndricas

\rho = A\qquad\qquad \varphi = \omega t\qquad\qquad z = v_0t

Determine si se conserva la cantidad de movimiento, el momento cinético respecto al origen de coordenadas y la energía cinética. En su caso, halle el valor de las constantes.

Solución

3 Trabajo en una semicircunferencia

Calcule el trabajo realizado por la gravedad cuando una partícula de masa m que pasa de estar a una altura 2R a estar al nivel del suelo (a) si el movimiento es una recta vertical (b) Desciende a lo largo de una semicircunferencia de radio R.

Solución

4 Trabajo por rozamiento

Calcule igualmente el trabajo realizado por la fuerza de rozamiento seco sobre una masa m que se hace deslizar por una mesa horizontal con la cual tiene un coeficiente de rozamiento μ, si (a) el movimiento es a largo de un segmento de longitud 2R, (b) el deslizamiento es a largo de una semicircunferencia de radio R.

Solución

5 Conservación en un oscilador armónico tridimensional

Una partícula de masa m=0.50\,\mathrm{kg} se encuentra sometida exclusivamente a una fuerza que satisface la ley de Hooke

\vec{F}=-k\vec{r}\qquad\qquad k = 2.00\,\mathrm{N}/\mathrm{m}

siendo su posición y velocidad iniciales

\vec{r}_0 = (-12.0\,\vec{\imath}+11.0\vec{\jmath})\,\mathrm{m}\qquad \qquad \vec{v}_0=(-8.0\vec{\imath}+24.0\,\vec{\jmath})\,\frac{\mathrm{m}}{\mathrm{s}}
  1. Calcule el momento cinético de la partícula respecto al origen de coordenadas
  2. Halle la energía mecánica de la partícula
  3. Determine las distancias máxima y mínima a las que pasa del origen, así como la rapidez mínima que alcanza

Solución

6 Rapidez y tensión de un péndulo

Empleando la ley de conservación de la energía, determine la velocidad con la que un péndulo simple de masa m y longitud L pasa por su punto más bajo, como función del ángulo máximo θ0 con el que se separa de la vertical.

Compare este resultado con el que se obtiene empleando la aproximación lineal. Determine el error relativo cometido con esta aproximación para \theta_0=10^\circ, \theta_0=20^\circ,… \theta_0=90^\circ

Determine la tensión de la cuerda en el punto más bajo y en el punto de máxima separación de la vertical. en función del ángulo θ0

Solución

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace