Deducción de la ecuación de onda en una dimensión
De Laplace
Contenido |
1 Objetivo
Nuestro objetivo es hallar la ecuación diferencial que deben verificar las soluciones para las ondas en una dimensión. Debe cumplir los siguientes requisitos:
2 Ondas hacia la derecha
Debe admitir como soluciones las de la forma
que representan señales que se propagan hacia la derecha sin deformarse.
3 Ondas hacia la izquierda
Una cuerda, u otro sistema vibrante, normalmente es simétrica respecto al sentido de propagación de las ondas. No hay diferencia entre agitar el extremo de la izquierda y producir una onda que se mueve hacia la derecha, que agitar el de la derecha y que la onda resultante se mueva hacia la izquierda.
Por tanto, la ecuación diferencial buscada debe admitir también soluciones de la forma
con g una función arbitraria.
4 Superposición
La ecuación resultante debe admitir además que sobre la misma cuerda vibrante se propaguen simultáneamente dos o más señales, sin afectarse mutuamente. Por ello la solución general debe ser de la forma
5 Derivando una vez
La solución general es una función de dos variables, x y t, siendo la velocidad de las ondas una constante. Necesitamos una ecuación que ligue las derivadas parciales respecto a la posición y respecto al tiempo.
5.1 Derivando respecto al espacio y al tiempo
Comenzamos con las soluciones de la forma y = f(x − vt), donde f es una función arbitraria de una sola variable, esto es que podemos escribir estas soluciones en la forma
esto es, y depende de x y t no de cualquier forma, sino a través de la combinación definida por s. Si ahora derivamos respecto a la posición x, aplicando la regla de la cadena
ya que
Si derivamos respecto al tiempo, nos resulta
donde la derivada de s respecto al tiempo vale