Problemas de dinámica vectorial (CMR2)
De Laplace
Revisión a fecha de 12:41 1 dic 2017; Antonio (Discusión | contribuciones)
1 Oscilador armónico tridimensional
Una partícula se mueve en tres dimensiones de forma tal que verifica la ecuación del oscilador armónico

con y
. Su posición inicial es
.
- Para el caso
. ¿Qué tipo de movimiento describe la partícula?
- Para el caso
, ¿cómo es la trayectoria? ¿Qué tipo de movimiento describe la partícula?
- Suponga ahora que
, ¿cómo es ahora la trayectoria de la partícula?
- Demuestre que en todos los casos la cantidad calculada en coordenadas polares
es constante.
2 Dos masas unidas por un muelle
Dos masas m1 y m2 se mueven a lo largo del eje OX unidas por un resorte de constante k y longitud natura . Inicialmente las dos masas se encuentran en reposo en x10 = 0 y
. Entonces se le comunica a la masa m1 una velocidad v0 en el sentido positivo del eje.
- Determine dos constantes de movimiento.
- Calcule la posición de cada una de las masas como función del tiempo. Sugerencia: realice el cambio de variables xG = (m1x1 + m2x2) / (m1 + m2),
.