No Boletín - Cuestión sobre EIRMD III (Ex.Ene/16)
De Laplace
Contenido |
1 Enunciado
Un sólido rígido realiza un movimiento helicoidal instantáneo respecto a un triedro de referencia , estando definido su campo de velocidades mediante la siguiente reducción cinemática en el origen de coordenadas :
- Calcule la velocidad de deslizamiento del sólido rígido (segundo invariante).
- ¿Por cuál de los siguientes puntos pasa el eje instantáneo de rotación y mínimo deslizamiento?
2 Velocidad de deslizamiento
La velocidad de deslizamiento (segundo invariante) es la proyección de la velocidad de cualquier punto sobre la velocidad angular:
3 Punto perteneciente al EIRMD. Primer método: cálculo de la velocidad del punto
Utilizando la ecuación del campo de velocidades del sólido rígido, calculamos la velocidad del punto en cada una de las opciones:
Si el punto pertenece al eje instantáneo de rotación y mínimo deslizamiento (EIRMD), la velocidad de dicho punto es necesariamente paralela al vector velocidad angular . Comprobamos que tal cosa sólo ocurre en la opción (c), la cual es por tanto la respuesta correcta:
4 Punto perteneciente al EIRMD. Segundo método: determinación del EIRMD
Partiendo del conocimiento de la reducción cinemática , es posible determinar el EIRMD del movimiento helicoidal instantáneo. En efecto: aplicando la ecuación vectorial del EIRMD, obtenemos el vector de posición de un punto genérico del EIRMD:
Por tanto, las coordenadas de un punto genérico del EIRMD en el triedro OXYZ de referencia son:
Comparando esta terna λ-paramétrica de coordenadas con las ternas de los cuatro puntos propuestos en el enunciado, deducimos que el único punto es el de la opción (c). En efecto: el punto del EIRMD que se obtiene para .