Entrar Página Discusión Historial Go to the site toolbox

No Boletín - Cuestión sobre EIRMD III (Ex.Ene/16)

De Laplace

Contenido

1 Enunciado

Un sólido rígido realiza un movimiento helicoidal instantáneo respecto a un triedro de referencia OXYZ\,, estando definido su campo de velocidades mediante la siguiente reducción cinemática en el origen de coordenadas \,O\,:


\vec{\omega}=(\,2\,\vec{\imath}+\vec{\jmath}-2\,\vec{k}\,)\,\mathrm{rad}/\mathrm{s}\,\,;\,\,\,\,\,\,
\vec{v}_O=(\,2\,\vec{\imath}-7\,\vec{k}\,)\,\mathrm{m}/\mathrm{s}
  1. Calcule la velocidad de deslizamiento del sólido rígido (segundo invariante).
  2. ¿Por cuál de los siguientes puntos pasa el eje instantáneo de rotación y mínimo deslizamiento?

\mathrm{(a)}\,\,\,\,P\mathrm{(1,2,0)}\,\mathrm{m}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,
\mathrm{(b)}\,\,\,\,P\mathrm{(0,0,0)}\,\mbox{m}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,
\mathrm{(c)}\,\,\,\,P\mathrm{(-1,1,0)}\,\mbox{m}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,
\mathrm{(d)}\,\,\,\,P\mathrm{(2,1,-2)}\,\mbox{m}

2 Velocidad de deslizamiento

La velocidad de deslizamiento v_d\, (segundo invariante) es la proyección de la velocidad de cualquier punto sobre la velocidad angular:


v_d=\frac{\vec{v}_O\cdot\vec{\omega}}{|\vec{\omega}|}=\frac{(\,2\,\vec{\imath}-7\,\vec{k}\,)\cdot(\,2\,\vec{\imath}+\vec{\jmath}-2\,\vec{k}\,)}{|\,2\,\vec{\imath}+\vec{\jmath}-2\,\vec{k}\,|}=\frac{18}{3}=6\,\,\mathrm{m/s}

3 Punto perteneciente al EIRMD. Primer método: cálculo de la velocidad del punto P\,

Utilizando la ecuación del campo de velocidades del sólido rígido, calculamos la velocidad \,\vec{v}_P\, del punto \,P\, en cada una de las opciones:


\begin{array}{lll}
\mathrm{(a)}\,\,\,\,\,\overrightarrow{OP}=(\,\vec{\imath}+2\,\vec{\jmath}\,)\,\mathrm{m} & \,\,\longrightarrow\,\,\,\,\, & \vec{v}_P=\vec{v}_O+\vec{\omega}\times\overrightarrow{OP}=(\,2\,\vec{\imath}-7\,\vec{k}\,)+\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & 1 & -2 \\ 1 & 2 & 0 \end{array}\right|=(6\,\vec{\imath}-2\,\vec{\jmath}-4\,\vec{k}\,\,)\,\mathrm{m}/\mathrm{s} \\ \\
\mathrm{(b)}\,\,\,\,\,\overrightarrow{OP}=\vec{0}\,\mathrm{m}& \,\,\longrightarrow\,\,\,\,\, & \vec{v}_P=\vec{v}_O+\vec{\omega}\times\overrightarrow{OP}=(\,2\,\vec{\imath}-7\,\vec{k}\,)+\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & 1 & -2 \\ 0 & 0 & 0 \end{array}\right|=(10\,\vec{\imath}-5\,\vec{\jmath}-\vec{k}\,)\,\mathrm{m}/\mathrm{s} \\ \\
\mathrm{(c)}\,\,\,\,\,\overrightarrow{OP}=(\,-\,\vec{\imath}+\vec{\jmath}\,)\,\mathrm{m}& \,\,\longrightarrow\,\,\,\,\, &\vec{v}_P=\vec{v}_O+\vec{\omega}\times\overrightarrow{OP}=(\,2\,\vec{\imath}-7\,\vec{k}\,)+\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & 1 & -2 \\ -1 & 1 & 0 \end{array}\right|=(12\,\vec{\imath}-\vec{\jmath}-6\,\vec{k}\,)\,\mathrm{m}/\mathrm{s} \\ \\
\mathrm{(d)}\,\,\,\,\,\overrightarrow{OP}=(\,2\,\vec{\imath}+\vec{\jmath}-2\,\vec{k}\,)\,\mathrm{m} & \,\,\longrightarrow\,\,\,\,\, & \vec{v}_P=\vec{v}_O+\vec{\omega}\times\overrightarrow{OP}=(\,2\,\vec{\imath}-7\,\vec{k}\,)+\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & 1 & -2 \\ 2 & 1 & -2 \end{array}\right|=(5\,\vec{\imath}-15\,\vec{\jmath}+5\,\vec{k}\,)\,\mathrm{m}/\mathrm{s} \\
\end{array}

Si el punto I\, pertenece al eje instantáneo de rotación y mínimo deslizamiento (EIRMD), la velocidad \vec{v}_I\, de dicho punto es necesariamente paralela al vector velocidad angular \vec{\omega}\,. Comprobamos que tal cosa sólo ocurre en la opción (a), la cual es por tanto la respuesta correcta:


\begin{array}{lllll}
\mathrm{(a)}\,\,\,\,\,\vec{v}_I=(10\,\vec{\imath}-5\,\vec{\jmath}\,\,)\,\mathrm{m}/\mathrm{s} & \,\,\longrightarrow\,\,\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 10 & -5 & 0 \\ 2 & -1 & 0 \end{array}\right|=\vec{0} & \,\,\,\longrightarrow\,\,\,\,\, & \vec{v}_I\parallel\vec{\omega}\,\,\,\Longrightarrow\,\,\,I\in \mathrm{EIRMD} \\ \\
\mathrm{(b)}\,\,\,\,\,\vec{v}_I=(10\,\vec{\imath}-5\,\vec{\jmath}-\vec{k}\,)\,\mathrm{m}/\mathrm{s} & \,\,\longrightarrow\,\,\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 10 & -5 & -1 \\ 2 & -1 & 0 \end{array}\right|\neq\vec{0} & \,\,\,\longrightarrow\,\,\,\,\, & \vec{v}_I\not\,\parallel\vec{\omega}\,\,\,\Longrightarrow\,\,\,I\not\in \mathrm{EIRMD} \\ \\
\mathrm{(c)}\,\,\,\,\,\vec{v}_I=(12\,\vec{\imath}-\vec{\jmath}-6\,\vec{k}\,)\,\mathrm{m}/\mathrm{s} & \,\,\longrightarrow\,\,\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 12 & -1 & -6 \\ 2 & -1 & 0 \end{array}\right|\neq\vec{0} & \,\,\,\longrightarrow\,\,\,\,\, & \vec{v}_I\not\,\parallel\vec{\omega}\,\,\,\Longrightarrow\,\,\,I\not\in \mathrm{EIRMD} \\ \\
\mathrm{(d)}\,\,\,\,\,\vec{v}_I=(5\,\vec{\imath}-15\,\vec{\jmath}+5\,\vec{k}\,)\,\mathrm{m}/\mathrm{s} & \,\,\longrightarrow\,\,\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 5 & -15 & 5 \\ 2 & -1 & 0 \end{array}\right|\neq\vec{0} & \,\,\,\longrightarrow\,\,\,\,\, & \vec{v}_I\not\,\parallel\vec{\omega}\,\,\,\Longrightarrow\,\,\,I\not\in \mathrm{EIRMD}
\end{array}

4 Punto perteneciente al EIRMD. Segundo método: determinación del EIRMD

Partiendo del conocimiento de la reducción cinemática \{\vec{\omega},\vec{v}_A\}\,, es posible determinar el EIRMD del movimiento helicoidal instantáneo. En efecto: aplicando la ecuación vectorial del EIRMD, obtenemos la posición (relativa a A\,) de un punto genérico I\, del EIRMD:


\overrightarrow{AI}=\frac{\vec{\omega}\times\vec{v}_A}{|\,\vec{\omega}\,|^2}\,+\,\lambda\,\vec{\omega}=\frac{1}{5}\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & -1 & 0 \\ 5 & -15 & 5 \end{array}\right|\,+\,\lambda\,(2\,\vec{\imath}\,-\,\vec{\jmath}\,)=[\,(-1\,+\,2\lambda)\,\vec{\imath}\,-\,(2\,+\,\lambda)\,\vec{\jmath}\,-\,5\,\vec{k}\,]\,\mathrm{m}

Y conocidas las coordenadas del punto A(2,2,2)\,\mathrm{m}\, en el triedro OXYZ de referencia, es fácil determinar las coordenadas en dicho triedro de un punto genérico I\, del EIRMD:


\left.\begin{array}{l} \overrightarrow{OA}=(2\,\vec{\imath}+2\,\vec{\jmath}+2\,\vec{k}\,)\,\mathrm{m} \\ \\ \overrightarrow{AI}=[\,(-1+2\lambda)\,\vec{\imath}\,-(2+\lambda)\,\vec{\jmath}\,-5\,\vec{k}\,]\,\mathrm{m} \end{array}\right\}\,\longrightarrow\,\,\,\overrightarrow{OI}=\overrightarrow{OA}\,+\,\overrightarrow{AI}=[\,(1+\,2\lambda)\,\vec{\imath}\,-\,\lambda\,\vec{\jmath}\,-\,3\,\vec{k}\,]\,\mathrm{m}\,\,\,\,\,\longrightarrow\,\,\,\,\, I(1+\,2\lambda,-\lambda,-3)\,\mathrm{m}

Comparando esta terna λ-paramétrica de coordenadas con las cuatro ternas propuestas en el enunciado, deducimos de inmediato que la única que corresponde a un punto I\in\mathrm{EIRMD}\, es la de la respuesta (a), siendo concretamente \,\,\,I(1,0,-3)\,\mathrm{m}\, el punto obtenido para \lambda=0\,.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace