Entrar Página Discusión Historial Go to the site toolbox

No Boletín - Disco y varilla guiada (Ex.Ene/15)

De Laplace

Contenido

1 Enunciado

El mecanismo de la figura está formado por un disco rígido (sólido "2") de radio R\,, que rueda sin deslizar (punto D\,) sobre el eje horizontal OX_1\, de la escuadra fija OX_1Y_1\, (sólido "1"), y cuyo centro C\, avanza con velocidad constante \vec{v}^{\,C}_{21}=v\,\vec{\imath}_1\,; y por una varilla rígida (sólido "0") de grosor despreciable y longitud indefinida, la cual rueda sin deslizar (punto B\,) sobre el citado disco, mientras que su extremo A\, está obligado a recorrer una guía horizontal fija de ecuación y_{1}=R\,.

Como parámetro auxiliar descriptivo de la posición del mecanismo, se define el ángulo \theta\, de la figura. Se pide:

  1. Determinación gráfica (razonada) de las posiciones de los centros instantáneos de rotación I_{21}\,, I_{02}\, e I_{01}\,.
  2. Reducción cinemática del movimiento \{21\}\, en el punto B\,, es decir, \{\vec{\omega}_{21}(\theta);\,\vec{v}^{\,B}_{21}(\theta)\}\,.
  3. Reducción cinemática del movimiento \{01\}\, en el punto A\,, es decir, \{\vec{\omega}_{01}(\theta);\,\vec{v}^{\,A}_{01}(\theta)\}\,.
  4. Determinación analítica de la posición del centro instantáneo de rotación I_{01}\,, es decir,\overrightarrow{AI_{01}}(\theta)\,.

Aviso: Las magnitudes pedidas deben quedar expresadas en función de \theta\,, R\, y/o v\,, pero NO en función de \dot{\theta}\,.

2 Determinación gráfica de los tres centros instantáneos de rotación

Sabemos que el disco (sólido "2") rueda sin deslizar sobre el eje horizontal OX_1\, de la escuadra fija OX_1Y_1\, (sólido "1"). La ausencia de deslizamiento implica que el centro instantáneo de rotación del movimiento \{21\}\, coincide con el punto de contacto disco-eje (punto D\,):


I_{21}\equiv D

También sabemos que la varilla (sólido "0") rueda sin deslizar sobre el disco (sólido "2"). Esta otra ausencia de deslizamiento implica que el centro instantáneo de rotación del movimiento \{02\}\, coincide con el punto de contacto varilla-disco (punto B\,):


I_{02}\equiv B

En cuanto al movimiento \{01\}\,, se nos indica que el extremo A\, de la varilla está obligado a recorrer una guía horizontal fija (paralela al eje OX_1\,), lo cual nos permite saber que la dirección de la velocidad \vec{v}^{\, A}_{01}\, es necesariamente horizontal. Trazando la perpendicular a dicha velocidad en el punto A\, y trazando la recta que pasa por los puntos I_{02}\, e I_{21}\, (en aplicación del teorema de los tres centros), hallaremos el punto I_{01}\, en la intersección de ambas rectas:


\left.\begin{array}{l}
\vec{v}_{01}^{A}\perp\overrightarrow{I_{01}A} \\ \{I_{01},\, I_{02},\, I_{21}\} \,\,\mathrm{alineados} \end{array}\right\} \,\,\,\Longrightarrow\,\,\, I_{01}\,\equiv\,\left\{\begin{array}{c} \mathrm{recta}\perp\vec{v}_{01}^{A} \\ \mathrm{que}\,\,\mathrm{pasa}\,\,\mathrm{por} \, A \end{array}\right\}\,\,\bigcap\,\,\,\left\{\begin{array}{c} \mathrm{recta}\,\,\mathrm{que}\,\,\mathrm{pasa}\,\,\mathrm{por} \\ I_{02}\equiv B\,\,\,\mathrm{e}\,\,\, I_{21}\equiv D \end{array}\right\}

3 Reducción cinemática (en B) del movimiento {21}

4 Reducción cinemática (en A) del movimiento {01}

5 Determinación analítica del C.I.R.{01}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace