Dos esferas huecas
De Laplace
Revisión a fecha de 17:25 17 jun 2014; Antonio (Discusión | contribuciones)
Contenido |
1 Enunciado
Se tiene un sistema de cargas formado por dos superficies esféricas de radio cuyos centros distan
, como indica la figura. Las superficies está cargadas uniformemente con cargas respectivas de
y

Para los puntos marcados en la figura (en cm)

- Calcule el campo eléctrico.
- Calcule el potencial eléctrico.
- A partir de la integración de la fuerza, halle el trabajo que debe realizar un agente externo para mover cuasiestáticamente una carga de
desde el punto A al punto D moviéndola a lo largo del eje X.
2 Campo eléctrico
La solución de este problema es una simple aplicación del principio de superposición. Basta con hallar el campo de cada superficie esférica y luego sumar las dos contribuciones.
El campo debido a una superficie esférica de radio acargada uniformemente tiene la expresión

siendo r las distancia del punto de observación al centro de la esfera y el vector unitario radial hacia afuera.
Así, tenemos para los cuatro puntos lo siguiente:
- Punto A
- Este punto está dentro de la esfera de carga positiva y fuera de la negativa. Para esta última la distancia al centro es de 5 cm y el vector unitario radial es
. Por tanto

- Punto B
- Se encuentra en el interior de las dos esferas, por lo que

- Punto C
- Éste se halla dentro de la esfera de carga negativa y fuera de la positiva. La distancia al centro de esta es también de 5 cm, pero el unitario radial es ahora el que va en la dirección y sentido del vector

- lo que da el campo

- Punto D
- Por último, este punto se encuentra fuera de las dos esferas, a 8 cm del centro de la esfera positiva y 5 de la negativa. El unitario radial es, en los dos casos
, lo que nos da
