Rotación tridimensional de una partícula
De Laplace
Revisión a fecha de 00:12 13 ene 2014; Antonio (Discusión | contribuciones)
Contenido |
1 Enunciado
Una partícula describe un movimiento circular alrededor del origen de forma que en un cierto instante su posición la da el vector

La velocidad angular de la partícula en el mismo instante es

En el mismo instante la aceleración angular tiene sentido opuesto a la velocidad angular y módulo 0.50 rad/s². Para este instante, calcule:
- La velocidad lineal y la rapidez de la partícula.
- La aceleración tangencial y la aceleración normal, tanto escalares como vectores.
- Los vectores tangente y normal.
- El radio de curvatura y el centro de curvatura.
2 Velocidad y rapidez
En lo que sigue, en todos los cálculos se usará el SI, por lo que escribiremos la posición como

2.1 Velocidad lineal
Para una partícula que describe un movimiento de rotación alrededor del origen, su velocidad instantánea la da

2.2 Rapidez
La rapidez o celeridad es igual al módulo de la velocidad
