Propiedades de un sistema de 8 partículas
De Laplace
Revisión a fecha de 15:23 31 dic 2013; Antonio (Discusión | contribuciones)
1 Enunciado
Para los movimientos compatibles del problema “Clasificación de movimientos de un sólido” calcule la cantidad de movimiento, el momento cinético y la energía cinética del sistema de masas.
2 Introducción
Este problema combina la solución de otros dos problemas. Por un lado, en “Clasificación de movimientos de un sólido” se establecen las propiedades cinemáticas de varios conjuntos de velocidades de tres puntos de un sólido. En segundo lugar, en “Momento de inercia de un sistema de partículas”, se halla el momento de inercia de un sistema de ocho partículas como el que se emplea en este problema.
La técnica general en lo que sigue es:
- Cantidad de movimiento
- Para un sistema de partículas se cumple
- donde M es la masa total del sistema y la velocidad de su centro de masas, la cual se puede calcular como la de un punto más del sólido
- Momento cinético
- El momento de n sistema de partículas vale
- que en el caso particular de un sólido se convierte en
- siendo I el momento de inercia respecto a un eje paralelo al EIRMD y que pasa por el centro de masas. En el caso de esta distribución de ocho masas, tal como se ve en otro problema, el momento de inercia es el mismo sea cual sea la dirección y vale
- Energía cinética
- El tratamiento es similar al del momento cinético. la energía cinética de este sólido vale