Entrar Página Discusión Historial Go to the site toolbox

Preguntas de test de cinemática del movimiento rectilíneo (GIE)

De Laplace

Contenido

1 Identificación de movimiento

Una partícula se mueve en línea recta, cumpliendo su velocidad instantánea

v = \sqrt{A- B x^2}

con A y B constantes positivas. La aceleración de una partícula que obedece esta ecuación es…

  • A proporcional a la posición x.
  • B nula.
  • C constante no nula.
  • D una combinación complicada de raíces cuadradas y polinomios.

1.1 Solución

La respuesta correcta es la A.

La aceleración en este movimiento vale

a=\frac{\mathrm{d}\ }{\mathrm{d}x}\left(\frac{v^2}{2}\right)

siendo

v^2 = A - Bx^2\,

nos queda

a = \frac{-2Bx}{2}=-Bx

Vemos que la aceleración es proporcional a la posición. Es más, se trata de un oscilador armónico.

2 Cálculo de velocidad media

Una partícula describe un movimiento rectilíneo tal que su velocidad instantánea cumple la ley

v(t) = \frac{v_0T}{t}

¿Cuánto vale la velocidad media entre t = T y t = 3T?

  • A 0.667v0
  • B 0.500v0
  • C 0.549v0
  • D No hay información suficiente para determinarla.

2.1 Solución

La respuesta correcta es la C.

La velocidad media en un intervalo es igual al cociente entre el desplazamiento realizado en un intervalo y la duración de este intervalo

v_m = \frac{\Delta x}{\Delta t}

La duración del intervalo es la diferencia entre el instante inicial final y el inicial

\Delta t = 3T-T = 2T\,

mientras que el desplazamiento es la suma de los desplazamientos infinitesimales, y por tanto igual a la integral de la velocidad instantánea

\Delta x = \int_T^{3T} v(t)\mathrm{d}t = \int_T^{3T}\frac{v_0T}{t}\mathrm{d}t = v_0T\left(\ln(3T)-\ln(T)\right)=v_0T\ln(3)

La velocidad media vale entonces

v_m = \frac{\Delta x}{\Delta t} = \frac{v_0T\ln(3)}{2T}=\frac{v_0}{2}\ln(3)

cuyo valor numérico es

v_m = \frac{\ln(3)}{2}v_0 = 0.549v_0

3 Propiedades de un m.a.s.

Una partícula describe un movimiento armónico simple de frecuencia angular ω, pudiéndose mover a lo largo de una recta horizontal. En t = 0 pasa por la posición de equilibrio con una velocidad + v0.

3.1 Pregunta 1

¿Cuánto vale la velocidad media entre t = 0 y t = T / 4, con T el periodo de oscilación?

  • A 2v0 / π
  • B Es nula.
  • C v0 / 4
  • D v0 / 2

3.1.1 Solución

La respuesta correcta es la A.

La velocidad media de una partícula en un movimiento rectilíneo se calcula como el cociente entre el desplazamiento neto y la duración del intervalo en que se realiza

v_m = \frac{\Delta x}{\Delta t}

En este caso, el intervalo se nos da como dato: es la cuarta parte del periodo

\Delta t = \frac{T}{4}

En un movimiento armónico simple, una partícula que parte del punto de equilibrio en t = 0 alcanza la máxima elongación en T / 4; en T / 2 vuelve a pasar por el origen en 3T / 4 alcanza la distancia máxima por el lado opuesto y en T regresa al origen, completando el ciclo.

Por tanto el desplazamiento entre t = 0 y t = T / 4 es igual a la elongación máxima, es decir a la amplitud.

\Delta x = A\,

y la velocidad media será igual a

v_m = \frac{A}{T/4} = \frac{4A}{T}

Queda calcular la amplitud a partir de los datos del enunciado.

Tenemos que la ecuación general de un movimiento armónico simple es

x = x_0\cos(\omega t)+\frac{v_0}{\omega}\mathrm{sen}(\omega t)

En esta ocasión la posición inicial es nula y el movimiento se reduce a un seno, como en la gráfica anterior

x = \frac{v_0}{\omega}\mathrm{sen}(\omega t)

La máxima elongación se da cuando el seno vale 1, por lo que la amplitud vale

A = \frac{v_0}{\omega}

y queda la velocidad media

v_m = \frac{4v_0}{\omega T}

pero

\omega = \frac{2\pi}{T}

lo que nos da finalmente

v_m = \frac{4v_0}{2\pi} = \frac{2}{\pi}v_0

3.2 Pregunta 2

¿Cuánto vale la aceleración en t = T / 4?

  • A + 4v0 / T
  • B Es nula.
  • C − 4v0 / T
  • D v0ω

3.2.1 Solución

La respuesta correcta es la D.

La aceleración en un movimiento armónico simple tiene la expresión

a = − ω2x

con x la posición medida respecto a la de equilibrio. En t = T / 4 la elongación es la máxima y

a(t=T/4) = -\omega^2 A = -\omega^2 \frac{v_0}{\omega} = -\omega v_0

4 Movimiento con dependencia exponencial

En un movimiento rectilíneo en el que la velocidad depende de la posición como

v = A\mathrm{e}^{\lambda x}\,

¿cuánto vale la aceleración?

  • A a = 0
  • B a = Aλeλx
  • C a = A2λex
  • C a = A2ex / 2

4.1 Solución

La respuesta correcta es la C.

Hallamos la aceleración calculando la derivada de la velocidad respecto al tiempo, lo cual se consigue aplicando la regla de la cadena

a = \frac{\mathrm{d}v}{\mathrm{d}t}=\frac{\mathrm{d}v}{\mathrm{d}x}\,\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}x}v

lo que da

\frac{\mathrm{d}v}{\mathrm{d}x}=A\lambda\mathrm{e}^{\lambda x}\qquad\Rightarrow\qquad a = \left(A\lambda\mathrm{e}^{\lambda x}\right)\left(A\mathrm{e}^{\lambda x}\right)=A^2\lambda\mathrm{e}^{2\lambda x}

Alternativamente, podemos calcularlo directamente a partir de

a = \frac{\mathrm{d}\ }{\mathrm{d}x}\left(\frac{v^2}{2}\right)

queda

a = \frac{\mathrm{d}\ }{\mathrm{d}x}\left(\frac{A^2\mathrm{e}^{2\lambda x}}{2}\right) = A^2\lambda\mathrm{e}^{2\lambda x}

5 Gráfica de una aceleración

La gráfica de la figura representa la aceleración de un movimiento rectilíneo entre t = 0\,\mathrm{s} y t=12\,\mathrm{s}. La partícula parte del reposo en x = 0.

Archivo:aceleracion-recta.png

5.1 Pregunta 1=

¿Cuánto vale la rapidez en t=12\,\mathrm{s}?

  • A 36 m/s.
  • B Es nula.
  • C 18 m/s.
  • D 72 m/s.

5.1.1 Solución

La respuesta correcta es la B.

La ecuación de esta aceleración es, en el SI,

a(t) = 6-t\,

que integrada nos da la velocidad instantánea

v(t) = 6t - \frac{t^2}{2}\,

En t = 12s esta velocidad vale

v(12\,\mathrm{s}) =(72-72)\,\mathrm{m}/\mathrm{s}=0\,\mathrm{m}/\mathrm{s}

con lo que la rapidez en ese instante es también nula. Gráficamente esto quiere decir que en la gráfica de la aceleración, el a´rea sobre el eje equivale al área bajo él.

5.2 Pregunta 2

¿Cuánto vale la rapidez en t=6\,\mathrm{s}?

  • A 36 m/s.
  • B Es nula.
  • C 18 m/s.
  • D 72 m/s.

5.2.1 Solución

La respuesta correcta es la C.

Para este instante, en cambio

v(6\,\mathrm{s}) = (36-18)\,\mathrm{m}/\mathrm{s}=18\,\mathrm{m}/\mathrm{s}

que también es el valor de la rapidez en ese instante.

5.3 Pregunta 3

¿Cuál es el desplazamiento neto entre t=0\,\mathrm{s} y t=12\,\mathrm{s}?

  • A 72 m.
  • B 144 m.
  • C 0 m.
  • D -432 m.

5.3.1 Solución

La respuesta correcta es la B.

Para hallar el desplzamiento debemos integrar la velocidad, con el resultado

x(t) = 3t^2 -\frac{t^3}{6}

que en t=12s vale

x(12\,\mathrm{s}) = 144\,\mathrm{m}

Puesto que la posición inicial es x=0, el desplazamiento en este intervalo es

\Delta x = 144\,\mathrm{m}

6 Estudio de un m.a.s.

Una partícula describe un movimiento armónico simple alrededor de x = 0 tal que comienza en la posición de equilibrio con velocidad +0.40 m/s alcanzando el máximo alejamiento en t=2\,\mathrm{s}

¿Cuánto vale la amplitud del movimiento?

  • A 0.31 m
  • B No hay información suficiente para hallarla
  • C 0.80 m
  • D 0.51 m

¿Cuánto vale la aceleración cuando pasa por x=+0.50\,\mathrm{m}?

  • A +0.20m/s²
  • B -0.31m/s²
  • C Es nula.
  • D −0.20m/s²

¿Cuánto tiempo tarda en pasar por primera vez por x=+0.50\,\mathrm{m}?

  • A 1.25 s
  • B 1.76 s
  • C 0.80 s
  • D Nunca llega a esa posición.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace