Entrar Página Discusión Historial Go to the site toolbox

Masa arrastrada sobre una mesa

De Laplace

Contenido

1 Enunciado

Se tiene un sistema de 2 masas de 4 kg cada una, atadas por una cuerda ideal, inextensible y sin masa, que pasa por una polea también ideal. La masa 1 está sobre una superficie horizontal sin rozamiento, mientras que la 2 cuelga verticalmente.

Archivo:dos-masas-mesa.png

Empleando el sistema de ejes de la figura y para el instante reflejado en ella:

  1. ¿Cuál es la aceleración de cada una de las masas?
  2. ¿Dónde se halla el centro de masas?
  3. ¿Cuál es la aceleración del CM?
  4. Si en el isntante representado la masa 1 tiene una rapidez v0, ¿cuánto vale la velocidad del CM?
  5. Para el caso de apartado anterior, ¿cuánto valen la cantidad de movimiento, la energía cinética y el momento cinético respecto al origen y respecto al CM?

2 Aceleraciones

Este sistema es un caso particular de otro estudiado en un problema de dinámica. Para calcular las aceleraciones respectivas realizamos los diagramas de cuerpo libre, considerando cada masa por separado, incluyendo todas las fuerzas que actúan sobre ellas.

Sobre la masa 1 actúan tres fuerzas: su peso, la reacción normal de la mesa y la tensión de la cuerda que tira de ella. Si hubiera rozamiento también deberíamos incluirlo, pero no es el caso. Por tanto tenemos

m_1\vec{g}+\vec{F}_n + \vec{T}_1 = m_1\vec{a}_1

Para la segunda masa las únicas fuerzas que actúan son su peso y la tensión que tiera de ella hacia arriba

m_2\vec{g}+\vec{T}_2=m_2\vec{a}_a

Separando en componentes cada una de estas ecuaciones tenemos, para la primera masa

T_1=m_1a_1\qquad\qquad -m_1g+F_n = 0

ya que su aceleración es puramente horizontal. Para la segunda masa obtenemos una sola ecuación escalar

-m_2g+T_2=m_2a_2\,

Por tratarse de un hilo ideal sin masa, el módulo de la tensión en el extremo de la masa 1 es igual al del otro extremo

T_1=T_2 = T\,

y por ser inextensible la rapidez y la aceleración horizontal de la masa 1 debe coincidir con la de la masa 2,

v_1 = -v_2\qquad\qquad a_1 = -a_2

El signo negativo proviene de que, de acuerdo con el sistema de ejes elegido hemos considerado

\vec{a}_1=a_1\vec{\imath}\qquad\qquad\vec{a}_2=a_2\vec{k}

es decir, ambas dirigidas hacia la polea, por lo que una de ellas debe ser negativa.

Con estas simplificaciones queda el sistema

m_1a_1 = T\qquad -m_2g+T=-m_2a_1

Sumando las dos ecuaciones hallamos las aceleraciones

a_1 = \frac{m_2}{m_1+m_2}g\qquad\qquad a_2 = -\frac{m_2}{m_1+m_2}g

y, en forma vectorial,

\vec{a}_1 = \frac{m_2}{m_1+m_2}g\vec{\imath}\qquad\qquad \vec{a}_2 = -\frac{m_2}{m_1+m_2}g\vec{k}

En el caso particular m1 = m2 = m

\vec{a}_1 = \frac{g}{2}\vec{\imath}\qquad\qquad\vec{a}_2=-\frac{g}{2}\vec{k}\qquad\qquad(m_1=m_2)

3 Posición del CM

El centro de masas es la media ponderada de las posiciones respectivas

\vec{r}_C=\frac{m_1\vec{r}_1+m_2\vec{r}_2}{m_1+m_2}

para la posición de la figura

\vec{r}_1 = -b\vec{\imath}\qquad\qquad \vec{r}_2=-b\vec{k}

resulta la posición del CM

\vec{r}_C = -\frac{m_1}{m_1+m_2}b\vec{\imath}-\frac{m_2}{m_1+m_2}b\vec{k}

Este punto se halla sobre la recta que une las dos partículas (o, para ser precisos, sus respectivos centros de masas). Si además las dos masas son iguales, el centro de masas se halla en el punto medio entre ellas

\vec{r}_C = -\frac{b}{2}\vec{\imath}-\frac{b}{2}\vec{k}\qquad\qquad(m_1=m_2)

4 Aceleración del CM

De manera análoga hallamos la aceleración del centro de masas

\vec{a}_C =\frac{m_1\vec{a}_1+m_2\vec{a}_2}{m_1+m_2}

que en este caso nos da

\vec{a}_C=\frac{m_1a_1\vec{\imath}-m_2a_1\vec{k}}{m_1+m_2}=\frac{m_1m_2g\vec{\imath}-m_2^2g\vec{k}}{(m_1+m_2)^2}

si además las masas son iguales

\vec{a}_C = \frac{g}{4}\vec{\imath}-\frac{g}{4}\vec{k}

5 Velocidad del CM

6 Propiedades del sistema

6.1 Cantidad de movimiento

6.2 Energía cinética

6.3 Momento cinético

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace