Entrar Página Discusión Historial Go to the site toolbox

Trabajo realizado para reunir cuatro cargas puntuales (F2GIA)

De Laplace

1 Enunciado

Un sistema electrostático está formado por dos cargas puntuales de valor + q y otras dos q, situadas en los vértices de un cuadrado de lado a. Las cargas están dispuestas de manera que en los extremos de cada diagonal del cuadrado hay cargas de distinto signo, tal como se muestra en la figura. Calcular el trabajo externo que ha sido necesario realizar para configurar dicho sistema trayendo las cargas desde el infinito.

 

2 Solución

Para constituir el sistema electrostático bajo estudio procedereremos a traer las cargas, una a una, siguiendo una secuencia de cuatro procesos. En cada uno de ellos, la carga que se traslada estará sometida a la fuerza externa y a la fuerza que ejerce sobre ella el campo eléctrico creado por las cargas traídas previamente. Además, procuraremos que dichos procesos sean (casi)estacionarios. Es decir, procesos (casi)ideales en los que la disipación de energía por fricción o rozamiento es (casi)nula, y la energía cinética del sistema no sufre variaciones apreciables. Por tanto, en cada instante de tiempo se tendrá que los trabajos infinitesimales realizados por la fuerza externa aplicada y por el campo eléctrico que actúa sobre la carga qi transportada, son opuestos. Y como la fuerza realizada por un campo eléctrico creado por cargas en reposo es conservativa, se tendrá que el trabajo elemental de la fuerza externa va a coincidir con la variación que experimenta la energía potencial de la partícula cargada qial desplazarse una cantidad infinitesimal en el seno del campo eléctrico creado por las cargas previamente reunidas:

\forall\,\mathrm{d}t\,\mathrm{,}\,\;\,\mathrm{d}K_i=\delta W_i^\mathrm{ext}+\delta W_i^e=0\;\;\Longrightarrow\;\;\delta W_i^\mathrm{ext}=\,\mathrm{d}U_e(q_i)

En consecuencia, el trabajo total externo W_i^\mathrm{ext} realizado para traer la carga qi desde el infinito hasta su posición final Pi será igual al valor de la energía potencial de la carga cuando se halla localizada en dicho punto. Y si la carga es puntual, esta energía potencial es igual al producto de la carga por el valor en Pi del potencial electrostático creado por las cargas con anterioridad. Es decir:

W_i^\mathrm{ext}=U_e(q_i;P_i)=q_i\!\ \left[V_1(P_i)+\ldots+V_{i-1}(P_i)\right]

Traigamos, en primer lugar, una de las cargas positivas. Obsérvese que como no hay cargas previas en el sistema, sobre esta q1 = + q no actúa fuerza eléctrica alguna (consideramos que se ecuentra fuera del radio de acción de cualquier otra carga), ni tampoco "trabajo eléctrico" por lo que, si q1 viene hasta el punto O = P1 mediante un proceso estacionario, no será necesario realizar ningún trabajo externo. O desde otro punto de vista: como aún no hay cargas previas, cuando traemos la carga q1 al punto P1 el valor del potencial electrostático en cualquier punto del espacio es nulo, por lo que,

W_1^\mathrm{ext}=0

Pero una vez traida, la carga crea una "perturbación" de naturaleza eléctrica que, si la consideramos situada en el origen del sistema de referencia, puede ser descrita en términos de la siguiente expresión del potencial electrostático:

V_1(\mathbf{r})=\frac{1}{4\pi \varepsilon_0}\ \frac{q_1}{|\mathbf{r}|}=\frac{k_e\!\ q}{|\mathbf{r}|}


 

Archivo:cuest_energia_1.gif

Traemos ahora la segunda carga positiva, q2 = + q, hasta el punto P2, que se halla a una distancia a de la primera. El trabajo externo necesario para lleva a cabo este proceso en condiciones estacionarias es:

W_2^\mathrm{ext}=q_2\!\ V_1(P_2)=\frac{k_2\!\ q^2}{a}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace