Condensador plano de capacidad ajustable GIA
De Laplace
Revisión a fecha de 14:17 31 mar 2012; Gabriel (Discusión | contribuciones)
1 Enunciado
Las armaduras de un condensador plano tienen una superficie


- Carga eléctrica en cada armadura del condensador.
- Capacidad del condensador con el dieléctrico.
- Distancia adicional que deben separarse las armaduras del condensador después de introducir el dieléctrico para que su capacidad sea la misma que tenía antes de introducir el dieléctrico.
- Energía electrostática almacenada en el condensador relleno de aire, con la placa dieléctrica y después de separar las armaduras.
2 Solución
En el sistema de conductores planos descrito, la distancia a de separación entre las placas es considerablemente menor que las dimensiones de los conductores. Considerando que éstos fueran aproximadamente cuadrados, y con los valores indicados en el enunciado, se tendría que la relación entre las longitudes de los lados de las armaduras metálicas y la distancia que las separa es del orden de...


cuando las placas o armaduras conducturas de sección S están separadas por una distancia a vacía (ausente de cualquier medio material)