Cálculo de aceleración en una curva
De Laplace
Contenido |
1 Enunciado
Un coche entra en una curva de 90° y 100 m de radio a 80 km/h. Disminuye su rapidez uniformemente hasta salir de la curva a 50 km/h.
- Determine su rapidez cuando ha recorrido 1/3 de la curva, la mitad y 2/3 de ella.
- Halle su aceleración tangencial y su aceleración normal en los mismos puntos.
- Exprese el vector aceleración en estos puntos en los ejes indicados en la figura
2 Rapidez
Como en el problema de la aceleración en una recta podría parecer que la rapidez varía linealmente con la posición y por tanto, a mitad de la curva la velocidad se habrá reducido en un 50% de la variación total. Sin embargo, no es así. Lo que es constante en este problema es la derivada respecto al tiempo, no la derivada respecto a la posición.
Se nos dice que
aunque no se nos dice cuánto vale esta cantidad, solo la velocidad en dos puntos conocidos (80 km/h a la entrada y 50 km/h a la salida). Por ello, necesitamos hallar la derivada respecto a la posición. Aplicando la regla de la cadena tenemos
siendo s la distancia medida a lo largo de la curva. Su derivada respecto al tiempo es la propia rapidez, por lo que