Entrar Página Discusión Historial Go to the site toolbox

5.6. Barra deslizante en armazón rotatorio

De Laplace

Contenido

1 Enunciado

El armazón de barras paralelas a los ejes OX0 y OZ0 (sólido “0”) rota alrededor del eje vertical fijo OZ1, de tal modo que el eje OX0 permanece siempre contenido en el plano horizontal fijo OX1Y1 (sólido “1”). Por otra parte, la varilla AB (sólido “2”), de longitud L, se mueve de forma que su extremo A desliza a lo largo del eje OX0, mientras que su extremo B desliza a lo largo del eje OZ0. Utilizando los ángulos θ y \varphi (definidos en la figura), así como sus derivadas temporales de primer y segundo orden, determine:

  1. \vec{v}^{A}_{01}, \vec{v}^{A}_{20} y \vec{v}^{A}_{21}.
  2. \vec{v}^{B}_{01}, \vec{v}^{B}_{20} y \vec{v}^{B}_{21}.
  3. \vec{\alpha}_{21}, \vec{a}^{A}_{21} y \vec{a}^{B}_{21}.
Archivo:barra-deslizante-rotante.png

Nota: Se recomienda el uso de la base vectorial asociada al triedro “0” para resolver el ejercicio.

2 Velocidades de A

Movimiento de arrastre {01}
En su movimiento como punto del armazón, el punto A se encuentra rotando alrededor del eje OZ0. Su velocidad instantánea es
\vec{v}^A_{01}=\vec{\omega}_{01}\times\overrightarrow{OA}
La velocidad angular de este movimiento la da la derivada temporal del ángulo que forman los dos ejes OX1 y OX0
\vec{\omega}_{01}=\dot{\varphi}\vec{k}_0
mientras que la posición instantánea de A es
\overrightarrow{OA}=L\cos(\theta)\vec{\imath}_0
lo que nos da la velocidad de arrastre
\vec{v}^A_{01}=(\dot{\varphi}\vec{k}_0)\times(L\cos(\theta)\vec{\imath}_0) = L\dot{\varphi}\cos(\theta)\vec{\jmath}_0
Movimiento relativo {20}
El punto A de la barra se desliza a lo largo del eje OX0. Puesto que conocemos su posición en todo momento, podemos hallar su velocidad simplemente derivando
\vec{r}^A_{20}=L\cos(\theta)\vec{\imath}_0   \Rightarrow   \vec{v}^A_{20}=\left.\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\vec{r}^A_{20}\right)\right|_0=-L\dot{\theta}\,\mathrm{sen}(\theta)\vec{\imath}_0
Movimiento absoluto {21}
Una vez que tenemos las velocidades de arrastre y relativa, la velocidad absoluta la calculamos sumando las dos anteriores
\vec{v}^A_{21}=\vec{v}^A_{20}+\vec{v}^A_{01}=-L\dot{\theta}\,\mathrm{sen}(\theta)\vec{\imath}_0+L\dot{\varphi}\cos(\theta)\vec{\jmath}_0

3 Velocidades de B

Las velocidades de B son incluso más fáciles de calcular que las de A.

Velocidad de arrastre {01}
El punto B se encuentra en el propio eje (permanente) de rotación, por lo que
\vec{v}^B_{01}=\vec{0}
Velocidad relativa {20}
De nuevo se trata de un deslizamiento, que podemos hallar derivando la posición
\vec{r}^B_{20}=L\,\mathrm{sen}(\theta)\vec{k}_0   \Rightarrow   \vec{v}^B_{20}=\left.\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\vec{r}^B_{20}\right)\right|_0=L\dot{\theta}\cos(\theta)\vec{k}_0
Velocidad absoluta {21}
Al ser nula la velocidad de arrastre, la absoluta coincide con la relativa
\vec{v}^B_{21}=\vec{v}^B_{20}+\vec{v}^B_{01}=L\dot{\theta}\cos(\theta)\vec{k}_0

4 Aceleraciones

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace