Entrar Página Discusión Historial Go to the site toolbox

Tiro oblicuo (G.I.A.)

De Laplace

1 Enunciado

Determina el movimiento de un proyectil disparado con una velocidad inicial v0 y un ángulo α con la horizontal. El proyectil está sometido a la acción de la gravedad. Calcula el radio de curvatura en el punto más alto de su trayectoria.

2 Solución

El campo gravitatorio ejerce una fuerza \vec{F}=m\,\vec{g} sobre una partícula de masa m. Según la Segunda Ley de Newton la aceleración de la partícula es


  \vec{a} = \dfrac{1}{m}\vec{F} = \dfrac{1}{m}m\,\vec{g} = \vec{g}

El enunciado nos da un sistema de ejes en el que la aceleración de la gravedad está dirigida en el sentido negativo del eje OZ, esto es


  \vec{g} = -g\,\vec{k}

La velocidad de la partícula se calcula como la integral del vector aceleración en el tiempo. Si la velocidad inicial es \vec{v}(0) tenemos


  \int\limits_{\vec{v}(0)}^{\vec{v}(t)}\mathrm{d}\vec{v} = \int\limits_0^t\vec{a}\,\mathrm{d} t
  \Longrightarrow
    \vec{v}(t) = \vec{v}(0) - \int\limits_0^t g\,\vec{k}\,\mathrm{d} t

Teniendo en cuenta que g y \vec{k} son constantes podemos hacer la integral para obtener


  \vec{v}(t) = \vec{v}(0) - g\,t\,\vec{k}

La posición se determina de modo similar integrando la velocidad


  \int\limits_{\vec{r}(0)}^{\vec{r}(t)}\mathrm{d}\vec{r} = \int\limits_0^t \vec{v} \,\mathrm{d} t
  \Longrightarrow
  \vec{r}(t) = \vec{r}(0) + \int\limits_0^t\left(\vec{v}(0) - g\,t\,\vec{k} \right)\,\mathrm{d} t

Como \vec{v}(0), g y \vec{k} son constantes obtenemos


  \vec{r}(t) = \vec{r}(0) + \vec{v}(0)\,t - \dfrac{1}{2}g\,t^2\,\vec{k}

Las expresiones para \vec{r}(t) y \vec{v}(t) describen el movimiento genérico de una partícula en el seno del campo gravitatorio. El movimiento concreto depende del valor de estas condiciones iniciales. Vamos a ver los tres casos descritos en el enunciado.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace