Esfera conductora rellena de dieléctrico con hueco
De Laplace
Revisión a fecha de 11:53 4 sep 2010; Antonio (Discusión | contribuciones)
Una superficie esférica conductora ideal de pequeño espesor y radio $2a$ está rellena de un medio dieléctrico ideal homogéneo de permitividad , en cuyo centro hay un hueco de radio $a$. Estando la superficie conductora conectada a un potencial V0, el hueco es llenado con una nube de electrones cuya carga total es − Q0. Suponiendo que esta carga se distribuye uniformemente en el hueco y que en el medio dieléctrico no hay carga libre, resuelva las siguientes cuestiones:
- Determine los campos
,
y
, tanto en el interior como en el exterior de la esfera, antes y después de introducir la carga eléctrica en el hueco.
- Halle la densidad de carga libre y la total en la interfaz r = a y en la cara interior y la exterior de la superficie conductora, antes y después de llenar el hueco.
- Calcule la energía electrostática almacenada en el sistema, antes y después de llenar el hueco.