Entrar Página Discusión Historial Go to the site toolbox

Fuerza de Lorentz sobre una esfera en rotación

De Laplace

Contenido

1 Introducción

Suponemos una distribución de carga que posee simetría esférica alrededor de un punto central \mathbf{r}_C, de forma que su densidad de carga verifica

\rho(\mathbf{r})=\rho(r')\,        \mathbf{r}'=\mathbf{r}-\mathbf{r}_C\qquad r'=|\mathbf{r}'|

Suponemos que esta distribución de carga está localizada, de forma que tiende a cero rápidamente cuando r' crece

Esta distribución de carga se mueve rígidamente, de forma que la velocidad de cada punto puede escribirse como

\mathbf{v}(\mathbf{r})=\mathbf{v}_C+\vec{\omega}\times\mathbf{r}'

Asimismo, esta distribución se encuentra en el seno de un campo electromagnético externo, de forma que cada elemento de carga se encuentra sometido a una fuerza

\mathrm{d}\mathbf{F}=\rho(\mathbf{E}+\mathbf{v}\times\mathbf{B})\,\mathrm{d}\tau

2 Fuerza sobre la distribución

La fuerza neta sobre la distribución de carga será la resultante de las fuerzas diferenciales

\mathbf{F}=\int \mathrm{d}\mathbf{F}=\int\rho(\mathbf{E}+\mathbf{v}\times\mathbf{B})\,\mathrm{d}\tau

Veamos cada contribución por separado.

2.1 Fuerza eléctrica

La fuerza eléctrica sobre la distribución será

\mathbf{F}_\mathrm{e}=\int \rho\mathbf{E}\,\mathrm{d}\tau

Podemos calcular una expresión aproximada para esta fuerza aplicando que la distribución de carga está localizada en torno a su centro, de manera que podemos sustituir el campo eléctrico por su desarrollo en serie de Taylor en torno al centro de la distribución

\mathbf{E}(\mathbf{r})=\mathbf{E}_C = \mathbf{r}'\cdot\mathbf{E}_C+\frac{1}{2}\mathbf{r}'\mathbf{r}':\nabla\nabla\mathbf{E}_C + \cdots

donde \mathbf{E}_C, \nabla\mathbf{E}_C, \nabla\nabla\mathbf{E}_C son constantes iguales al valor del campo y sus derivadas sucesivas en el centro de la distribución.

De esta forma la fuerza eléctrica viene dada por la serie

\mathbf{F}_\mathrm{e}= \int \rho \mathbf{E}_C\,\mathrm{d}\tau+ \int \rho \mathbf{r}'\cdot\nabla\mathbf{E}_C\,\mathrm{d}\tau + \frac{1}{2}\int \rho \mathbf{r}'\mathbf{r}':\nabla\nabla\mathbf{E}_C\,\mathrm{d}\tau+\cdots

y, sacando las constantes fuera de las integrales

\mathbf{F}_\mathrm{e}=Q\mathbf{E}_C+(\mathbf{p}\cdot\nabla)\mathbf{E}+\frac{1}{2}\mathbf{Q}:\nabla\nabla\mathbf{E}_C+\cdots

donde

Q=\int\rho\,\mathrm{d}\tau        \mathbf{p}=\int\rho\,\mathbf{r}'\mathrm{d}\tau        \mathbf{Q}=\int \rho\mathbf{r}'\mathbf{r}'\,\mathrm{d}\tau

2.2 Fuerza magnética

2.3 Fuerza total

3 Momento sobre la distribución

3.1 Torque eléctrico

3.2 Torque magnético

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace