Entrar Página Discusión Historial Go to the site toolbox

Teorema de conservación de la energía mecánica

De Laplace

Contenido

1 Teorema de las fuerzas vivas

Artículo completo: Teorema de las fuerzas vivas

El trabajo realizado sobre una partícula que se mueve desde un punto A a un punto B recorriendo una curva C es igual a la suma de los trabajos elementales a lo largo de dicha curva

W_{A\to B} = \int_{\!\!\!\!\!\!\!\!\! C\ A}^B \delta W = \int_{\!\!\!\!\!\!\!\!\! C\ A}^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}

Se define asimismo la potencia desarrollada por la fuerza como el trabajo que realiza durante un tiempo dt, dividido por dicho intervalo

P = \frac{\delta W}{\mathrm{d}t}=\mathbf{F}\cdot\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}=\mathbf{F}\cdot\mathbf{v}

Aplicando la segunda ley de Newton la potencia desarrollada por una fuerza puede escribirse como la derivada respecto al tiempo de la energía cinética

P = \mathrm{m}\mathbf{a}\cdot\mathbf{v}= m\mathbf{v}\cdot\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}=\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{1}{2}mv^2\right)=\frac{\mathrm{d}K}{\mathrm{d}t}

siendo K la energía cinética de la partícula

K = \frac{1}{2}mv^2

(donde v^2 = \mathbf{v}\cdot\mathbf{v} es el módulo de la velocidad, o celeridad, al cuadrado).

Integrando respecto al tiempo obtenemos el teorema de las fuerzas vivas (o teorema trabajo-energía cinética):

W_{A\to B}=\int_A^B P\,\mathrm{d}t=\Delta K = K_B-K_A

El trabajo realizado no tiene por qué ser necesariamente positivo. Si la partícula se ve frenada, su energía cinética disminuye y el trabajo resultante es negativo.

2 Fuerzas conservativas

3 Teorema de conservación de la energía mecánica

Cuando existe una energía potencial de la cual deriva la fuerza que actúa sobre una partícula se cumple la siguiente identidad

W_{A\to B} = \int_A^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}=U(A)-U(B) = -\Delta U

esto es, el trabajo realizado sobre la partícula es igual a la disminución de su energía potencial.

Combinando este teorema con el de las fuerzas vivas obtenemos

-\Delta U = U(A) - U(B) = W_{A\to B} = K(B) - K(A) = \Delta K

esto es, la que disminuye la energía potencial es igual a lo que aumenta la energía cinética (o viceversa). Reagrupando términos y definiendo la energía mecánica de la partícula como la suma de su energía cinética más la potencial obtenemos

E(A) = K(A) + U(A) = K(B) + U(B) = E(B) = \mathrm{cte}\,

lo que se conoce como teorema de conservación de la energía mecánica:

En ausencia de fuerzas no conservativas, la energía mecánica de una partícula permanece constante.

Este teorema deja de cumplirse cuando sobre la partícula actúan fuerzas no conservativas, como el rozamiento. Las fuerzas que reducen la energía mecánica (normalmente transformándola en calor) se conocen como fuerzas disipativas.

4 Ejemplos

5 Presencia de fuerzas no conservativas

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace